

Hardening Mechanisms of Silicon Nanospheres: A Molecular Dynamics Study

A DISSERTATION

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Lucas Michael Hale

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

William W. Gerberich, Roberto Ballarini

May 2011

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 2011 2. REPORT TYPE

3. DATES COVERED
 00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
Hardening Mechanisms Of Silicon Nanospheres: A Molecular Dynamics
Study

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Minnesota,Minneapolis,MN,55455

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Government or Federal Purpose Rights License

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

198

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

© Lucas Michael Hale 2011

 i

Acknowledgements

I'd like to thank Dong-Bo Zhang and Traian Dumitrica for providing the DFTB

calculations used in Chapter 4. Additionally, I want to acknowledge Xiaowang Zhou,

Jonathan Zimmerman and Neville Moody at Sandia National Laboratories in California

for supporting my research.

Funding for this work was partially supported in part by National Science

Foundation grants NSF_CMMI 0800896 and CMMI-1000415. Additional support was

obtained by the Air Force through an AOARD-08-4131 program dedicated to

understanding plasticity and fracture in hard materials and the Abu Dhabi-Minnesota

Institute for Research Excellence (ADMIRE); a partnership between the Petroleum

Institute (PI) of Abu Dhabi and the Department of Chemical Engineering and Materials

Science of the University of Minnesota. Work was also supported by Sandia,

Livermore. Sandia is a multi-program laboratory operated by Sandia Corporation, a

Lockheed Martin Company, for the United States Department of Energy’s National

Nuclear Security Administration under contract DEAC04-94AL85000.

 ii

 Abstract

Much work has been done studying the compression of nanostructures of silicon

as the measured properties can be related to structures present in MEMS and NEMS

devices. In particular, spherical silicon nanoparticles are found to be much harder than

bulk silicon during compression. Here, large scale molecular dynamics simulations are

presented that investigate the yielding and hardening mechanisms of nanospheres. The

resulting yield behavior is shown to vary with changes in temperature, sphere size,

atomistic potential, and crystallographic orientation with respect to the loading

direction. With the Tersoff potential, a strong temperature dependence is observed as

hardness values near 0 K are much greater than 300 K values. -Sn forms during [100]

crystallographic compressions which results in a slight hardening above 40 % strain.

The Stillinger-Weber allowed for dislocation interactions to be studied in spheres

comprised of up to one million atoms. Direct comparisons of the simulated results are

made to experimental results indicating that the displacement excursions and low strain

hardening behavior can be explained with dislocation activity. Further simulations

investigated interactions affecting dislocations that might influence the properties of

silicon nanostructures. The nature of dislocation-dislocation, dislocation-applied shear

strain, and dislocation-free surface interactions are shown to be consistent with what is

predicted by elementary dislocation theory. Presence of an oxide results in a more

complex interaction as both the interface and the lattice strain associated with the oxide

affect the dislocations. Depending on the geometry of the system, this oxide interaction

may be repulsive resulting in dislocations becoming trapped in the system allowing for

substantial hardening.

 iii

Table of Contents

Acknowledgements i

Abstract ii

Table of Contents iv

List of Tables vii

List of Figures viii

CHAPTER ONE Introduction to Silicon Nanostructures 1

1.1 Motivation 1

1.2 Experimental Background 4

1.2.1 Nanoindentation Basics 4

1.2.2 Pressure induced phases of silicon 7

1.2.3 Nanoindentation of bulk silicon 9

1.2.4 Compressing Si nanostructures 12

CHAPTER TWO Simulation Procedure 17

2.1 Molecular Dynamics Background 17

2.1.1 Atomistic potentials 17

2.1.2 External constraints 20

2.1.3 Time integration 20

2.2 Silicon Potentials 21

 iv

2.2.1 Stillinger-Weber potential 21

2.2.2 Tersoff potential 23

2.3 Si-SiO capable potentials 24

2.3.1 Jiang and Brown Potential 25

2.3.2 Watanabe, Fujiwara, Noguchi, Hoshino and Ohdomari Potential 27

2.4 Simulation Design 28

2.4.1 Sphere Compression 29

2.4.2 Dislocation Interactions 31

2.5 Phase Definition 35

2.6 Characterization Techniques 37

CHAPTER THREE Tersoff Potential and Phase Transformations 40

3.1 Contact Area Analysis 40

3.2 Measured Load and Stress 46

3.3 Observed Phase Transformations 49

3.4 Hardening at High Strains 60

3.5 Dislocations 64

3.6 Summary 68

CHAPTER FOUR Dislocations with the Stillinger-Weber Potential 69

4.1 Plasticity Mechanisms 69

 v

4.2 Dislocation Nucleation on {110} Planes . . . 74

4.3 Dislocation Yielding 79

4.4 Hardening Behavior 82

4.5 Summary 88

CHAPTER FIVE Dislocation interactions 91

5.1 Si-SiO2 Potentials 91

5.2 System Design 95

5.3 Periodic Boundary Conditions 96

5.4 Free Surface Boundaries 101

5.4.1 Attraction to the Free Surface 101

5.4.2 Temperature Variations 105

5.5 Oxide Interaction. 108

5.5.1 One Oxide Interface 110

5.5.2 Two Oxide Interfaces 111

5.6 Summary 116

CHAPTER SIX Summary and Conclusions 119

6.1 Research Summary 119

6.2 Conclusions 122

6.3 Recommended Future Work 123

 vi

References 127

APPENDIX ONE Identification Parameter Calculation 133

APPENDIX TWO Oxide Potentials 147

 vii

List of Tables

Table 3.1 Lattice parameters and elastic constants of DC Si 50

Table 3.2 Lattice parameters and elastic constants of BCT5 Si 50

Table 3.3 Lattice parameters and elastic constants of -Sn Si 50

 viii

List of Figures

Figure 1.1 Examples of applications for this research 2

Figure 1.2 Schematic of nanoindenter and load-displacement example 5

Figure 1.3 Unit cells of BCT5 and -Sn 8

Figure 1.4 Schematic of DC to BCT5 transformation 9

Figure 1.5 Load-displacement for indented bulk silicon 10

Figure 1.6 MD cross sections of indented bulk silicon 12

Figure 1.7 TEM images and load vs. displacement of Si nanoparticle 13

Figure 1.8 MD cross section of a compressed Si nanosphere 16

Figure 2.1 Simulation design for sphere compression 30

Figure 2.2 Schematic of dislocation creation in system design 31

Figure 2.3 Schematics of dislocation interaction simulations 32

Figure 2.4 Visualization of slip vector and angular parameters 38

Figure 3.1 Contact radius vs. displacement: measured and modeled 43

Figure 3.2 Contact radius vs. displacement for strains of 0 to 0.9 46

Figure 3.3 Load vs. displacement of 10 nm diameter spheres 47

Figure 3.4 Contact stress vs. strain of 10 nm diameter spheres 48

Figure 3.5 Cross sections of [100] compressed spheres 52

Figure 3.6 RDF of 4 coordinated regions post compression 53

Figure 3.7 Cross sections of [110] and [111] compressed spheres 55

Figure 3.8 Fraction -Sn vs. strain 56

Figure 3.9 Fraction of phases vs. strain 58

Figure 3.10 Average stress vs. strain of [100] compressed spheres 61

 ix

Figure 3.11 Contact stress vs. strain to high strains 62

Figure 3.12 Evidence of dislocations at 600 K 65

Figure 3.13 Dislocation in 20 nm sphere at 300 K 66

Figure 4.1 Dislocation morphology in [100] compressed spheres 70

Figure 4.2 Nature of BCT5 with increasing strain 71

Figure 4.3 Stacking fault 72

Figure 4.4 Dislocations in [111] compressed spheres 73

Figure 4.5 Dislocation nucleation on a (110) plane 75

Figure 4.6 GSF curves for (110) and (111) planes 76

Figure 4.7 Schematic models for dislocation morphology 81

Figure 4.8 Dislocations related to load drops 82

Figure 4.9 Contact stress vs. strain of a 20 nm sphere 84

Figure 4.10 Contact stress vs. strain near the yield point 84

Figure 4.11 Strain hardening from experiments and simulations 87

Figure 5.1 Test values for Jiang and Brown potential 93

Figure 5.2 RDF for -quartz: Jiang and Brown vs. BKS 94

Figure 5.3 Dislocation separation with periodic boundaries 98

Figure 5.4 Average dislocation velocities 101

Figure 5.5 Dislocation attraction to free surface 103

Figure 5.6 Dislocation response to free surfaces and fixed strain 105

Figure 5.7 Temperature dependence of dislocation motion 106

Figure 5.8 Dislocation response in single oxide system 111

Figure 5.9 Dislocation motion in double oxide systems 112

 x

Figure 5.10 Dislocation response to incremental straining 113

Figure 5.11 Unmoving dislocations in oxide containing system 115

 1

Chapter One: Introduction to Silicon Nanostructures

1.1 Motivation

 Over the last few decades, most fields of engineering have had a fixation on one

word: Nano. The fixation on the nano-scale can be considered nothing more than a

continuation of the miniaturization of technology that had already seen the entrance into

and the mastery of the micro-scale. But in other ways, the nano-scale introduces new

challenges and interesting discoveries to be made. Many physical properties no longer

follow the trends exhibited at larger scales and as a result a material’s behavior,

mechanical or otherwise, deviates from the expected. This size scale effect is most

often attributed to the increased influence that surfaces have on material behavior and

on the system size beginning to approach the same scale as atoms and molecules.

 Inevitably, the study of particles and structures on the nano-scale leads to the

question of practicality: can devices be successfully designed to incorporate such small

features? Inherent to answering this is determining if the devices are mechanically

robust and will operate with sufficiently high levels of reliability. Designing and

implementing devices at this size requires a proper understanding of not only how these

behaviors deviate from the expected larger scale behaviors, but also why. To better

describe the importance of this, a handful of potential applications and the questions

related to their mechanical reliability are described here.

 First, consider a silicon MEMS or NEMS device that contains free standing

features of many sizes, including some at the nano-scale. The most critical failure

 2

mechanism of MEMS devices is adhesion wear due to contact between different

constituent components. This failure mechanism results from repeated contact and

rubbing between surfaces causing damage to nano-scale surface asperities [1]. An

understanding of this phenomenon requires knowledge of how these asperities are

plastically damaged.

 Next, consider a film of nano-grained silicon that is subjected to a surface

loading. How would the nano-grained film behave differently than a single crystal

film? Would it offer more or less protection to the material that it coats? Would the

yielding that occurs within the grains differ from bulk silicon? If nanoparticles of

comparable size to the grains showed an increase in hardness behavior, would also the

film? And what if the film was synthesized from nanoparticles?

Figure 1.1: SEM images of examples where the study of the mechanical nature of nanostructures is

useful. (a) Image of a silicon MEMS device featuring a gear subjected to repeated contact [2]. (b)

Image of the surface of a SiC film created by depositing nanoparticles [3]. (c) Image showing a

silicon nanoparticle between 40 and 50 nm in diameter [4]. This particle was used for experimental

testing of these nanoparticles. It is also of comparable size to particles used in polishing slurries.

 Finally, think about a polishing slurry that contains particles of nearly uniform

size suspended within a solution. This perhaps offers the simplest example of particles

 3

subjected to mechanical loads, as the particles in the slurry are used to rub against the

surface of the material that is being polished. The smaller the particles used in the

slurry, the finer the damage that they cause, thus a smoother finish. But are the smaller

particles capable of retaining their shape and size during such a process, or will they

yield and/or fracture?

 In order to investigate the mechanical behaviors associated with these questions,

a host of techniques have been developed to create, study, and model sub-micron

particles. With regards to modeling, upon reaching the nano-scale, the classical

continuum based modeling paradigms used to design larger-scale objects are often no

longer applicable as atomic scale properties become more relevant. Instead, atomistic

based techniques are required, such as molecular dynamics and Monte Carlo

simulations. What is perhaps most interesting about these atomistic techniques is that

as the computational efficiency and power advances, the largest dimensions that can be

readily simulated are approaching the scale that can be measured experimentally. This

allows for increasingly more opportunities to directly compare these types of

simulations to the experimental results.

 The focus of this thesis is the molecular dynamics simulations related to the

study of the mechanical compression of silicon nanoparticles. It is hoped that the

simulations will reveal the specific mechanisms for yielding that occur and so far have

only been inferred experimentally. This would not only help identify possible

mechanisms of mechanical response, but also allow new and more accurate theoretical

models to be developed. In addition, as no atomistic simulation is completely accurate,

comparing these simulations to experimental results will offer a better understanding of

 4

which assumptions made in the simulations result in the most realistic response of real

material response.

1.2 Experimental Background

 Because the molecular dynamics simulations that comprise this thesis are

designed to best mimic experiments, it is necessary to understand how the baseline

experiments were performed and the results that they produced. A short background is

presented here to describe nanoindentation, the experimental technique most often used,

and to discuss the experimental results obtained from bulk silicon and silicon

nanostructures.

1.2.1 Nanoindentation Basics

 The experimental works that focused on compression of nanoparticles and

structures are based upon the use of nanoindentation apparatus and the theories and

principles developed for their use. Instruments commonly referred to as nanoindenters

use hard tipped probes to measure the mechanical resistance of materials to contact

deformation. The shape of the indenter tips are well defined and are often spherical,

conical, or pyramidal. Unlike macro-sized indenters that measure material hardness

values, there is no standardized tip size across different manufacturers, although sizes

are typically in the range of the spherical tip having a radius of curvature of 1 m. This,

along with the sharp features of the other tip geometries, allows for the probing of nano-

sized regions.

 5

Figure 1.2: (a) A diagram showing a simplified representation of nanoindentation. The tip is

brought into contact with the surface and is then subjected to an applied load, P, driving the tip

into the material. The displacement is determined by comparing the position of the tip at the

surface relative to its position with the applied force. (b) A typical load vs. displacement curve

obtained during nanoindentation [5]. The fused silica was indented up to a load of 120 mN

resulting in residual displacement after unloading showing that elastic and plastic behavior

occurred during loading. After reaching the maximum force, the load was cycled. All unloading

and cycling are nearly on top of each other suggesting that the unloading and reloading is nearly

elastic.

During testing, nanoindentation devices measure two values: the applied force

and the position of the tip. The displacement into the surface can then be calculated by

identifying the location where the tip first comes into contact with the surface.

Indentation experiments are typically load controlled, meaning that load vs.

displacement plots are obtained by contacting the indenter tip on the surface of the

material being tested, then ramping up the applied load while measuring the tip’s

position. This is done as the instruments are more apt at controlling an applied load

than they are for applying a specific displacement. A simple schematic of the indenter

tip and an example of a load vs. displacement curve are shown in Figure 1.2.

 6

In 1992, Oliver and Pharr [5] published a standardized technique for calculating

the elastic modulus and hardness of indented materials. Their method has been readily

accepted and used throughout the indentation community. Within their work, they

showed that the complex expressions for the stiffness, S, with an axisymetric indenter

can be reduced to the expression

AEaES rr


2
2  (1.1)

where Er is the effective modulus of the tip and surface, A is the contact area and a is

the radius of the contact area. By observing that during unloading most materials

behave elastically, the slope of the unloading curve can be used to measure the stiffness

of the material. This allows for either that material’s elastic properties or the contact

area to be determined, assuming that one is known. The hardness of the material, H,

was also defined as the applied load, P, divided by the contact area.

2a

P

A

P
H


 (1.2)

The Oliver and Pharr method [5] relies on the knowledge of the contact area

between the indenter tip and the surface. Although very important in acquiring accurate

values, the contact area cannot be directly measured. Also, many factors can influence

it, including tip and surface imperfections, yield point values and material anisotropy.

Many methods have been developed to estimate the contact area. The simplest are

elasticity [6] and geometric [7] based models that assume values for the contact area

under ideal conditions. More complex methods involve obtaining a surface profile of

the specific tips used allowing for all of the tip’s defects to be accounted for in a contact

area function for the tip used [8].

 7

1.2.2 Pressure induced phases of silicon

 One of the more interesting aspects of the mechanical properties of silicon is the

fact that it can undergo numerous pressure induced phase transformations at relatively

low pressures. These phase transitions have been extensively studied with diamond

anvil pressure tests [9-13]. The fact that the stresses due to a nanoindenter are large

enough to at least locally induce some of these phase transformations has resulted in

numerous nanoindentation studies on bulk silicon. Exploring these studies and the

possible phase transformations offers a good starting point because the experimental

and computational techniques are similar to what is used to study nanostructures. It

also allows for a direct comparison between the behavior of the nanostructures and that

of the bulk material.

 The most thermodynamically stable structure is the diamond cubic structure,

often referred to as either DC or Si I. In this structure, each atom covalently bonds to

four neighbors to form a tetrahedra. This covalent structure gives silicon some unique

and interesting properties. This structure is relatively brittle and elastically anisotropic.

In addition, due to the relatively loose atomic packing of this structure, it is capable of

transforming into a number of pressure induced phases. The two of the high pressure

phases that are observed during the simulations presented here are also described.

The -Sn (Si II) phase is the first of the high pressure phases that silicon is

known to form during hydrostatic compression [11]. Its unit cell is shown in Figure

1.3(b). This phase can be viewed as a tetragonal distortion of the DC structure through

a reduction in the lattice parameter in one of the three cubic directions. The resulting

 8

structure has all atoms with six nearest neighbors and is metallically conductive. -Sn

Si is not stable at ambient pressures and at room temperature will revert to a variety of

four coordinated metastable polymorphs [9, 10, 14-16] and amorphous silicon. These

phases can all be seen as structures that form due to a distortion in the tetrahedral

bonding found in the DC structure. The amorphous silicon phase is best described as

being locally bonded similarly to the other four coordinated structures but lacking an

overall crystalline periodicity.

 Higher pressures result in a series of other structures being formed [13]. The

pressures necessary to form these phases are not considered in this thesis, and therefore

they will not be described here.

Figure 1.3: Representations showing the bonding nature of the (a) BCT5 and (b) -Sn structures of

silicon.

In addition to the well known and experimentally observed phase

transformations, another phase referred to as BCT5 is seen during atomistic simulations.

The BCT5 phase was first proposed by Boyer, et al. in 1991 [17] and its unit cell and

bonding is shown in Figure 1.3(a). Initially identified using a Stillinger-Weber potential

[18] and first principle calculations, BCT5 is a body-centered-tetragonal structure where

 9

every atom has a coordination number of 5. The Stillinger-Weber results showed BCT5

to be stable, while the first principle pseudo potential had it being metastable at all

pressures. Interestingly, like the -Sn structure, BCT5 can also be obtained through a

distortion of the DC lattice [19]. One simple way of looking at this distortion is taking a

glide set of [111] planes in the DC structure. Both of the planes in this set consist of a

2-D hexagonal structure and are positioned with respect to each other such that each

atom is neighboring three atoms in the other plane. BCT5 type bonding is then

achieved by deforming both planes to square lattices resulting in an additional atomic

bond for each atom (Figure 1.4). Simulations using the Tersoff atomistic potential [20,

21] have also shown the BCT5 phase to form during loadings [19, 22-25].

Figure 1.4: A diagram allowing for a visualization of how diamond cubic silicon can transform to

BCT5 upon loading. (a) The relative positions of atoms within two neighboring [111] planes in

silicon of the glide set. Each atom is bound to 3 atoms in the other [111] plane shown, and one atom

directly above/below in another plane. (b) The planes are deformed from the hexagonal packing to

the square structure resulting in each atom gaining a neighbor.

1.2.3 Nanoindentation of bulk silicon

It is generally accepted that indenting bulk silicon induces phase

transformations. There have been numerous experimental indentation studies of silicon

 10

[26-40] using nanoindenters and their predecessor techniques. These tests repeatedly

revealed three key pieces of evidence suggesting that the phase transformation is

occurring. First, the conductivity changes from that of a semiconductor to that of a

metal upon loading and reverts back to a semiconductor upon unloading. This supports

the formation of -Sn due to it being a metallic phase. Second, the load vs.

displacement curve displays unique characteristics. The unloading curves often feature

what are referred to as "elbows" or "pop-out" where either the slope of the curve or the

curve itself is discontinuous indicating that there is a recovery mechanism occurring

(Figure 1.5). It is clear from Figure 1.5(b) that a phase transformation has occurred

during unloading as the curve during reloading is distinctly different from the unloading

curve. The final evidence for this transformation is the presence of amorphous Si and

the Si III/XII phases after unloading.

Figure 1.5: Examples of the unloading behaviors seen during the nanoindentation of silicon [28].

(a) Shows the pop-out behavior consistent with a fast unloading rate resulting in the formation of

amorphous Si. (b) Shows an elbow typical of a slow unloading allowing for the formation of

various 4 coordinated structures.

 11

Much of the work on Si nanoindentation has investigated the loading conditions

and the resulting phases obtained after unloading. The most notable result is that slow

unloading rates increase the likelihood for Si III and Si XII to form and correspond to

the elbow behavior, whereas fast unloading rates leave behind amorphous silicon after a

pop-out event [27, 28].

 Molecular dynamics simulations of the indentations using the Tersoff potential

support the experimental findings [19, 22-25, 41-43]. Upon indentation, the atoms

below the tip compress and increasingly gain more nearest neighbors. Based on this

coordination number change, not only is the -Sn phase identified in this compressed

region, but also the BCT5 phase. A cross sectional example is seen in Figure 1.6.

Pressure induced deformation pathways have been identified allowing for these phase

transformations to occur without any bond breaking allowing the coordination number

to smoothly increase and the phases to gradually form [19]. Unloading and annealing

shows the compressed region relaxing and reverting back to 4 coordinated bonds.

 12

Figure 1.6: Cross section of a molecular dynamics simulation using the Tersoff potential with

atoms colored according to their coordination [24]. (a) The region just below the indentation

shows high pressure red atoms mixed with yellow 6 coordinated -Sn. 5 coordinated atoms

believed to be BCT5 are then the light blue atoms radiating out below the red and the yellow atoms.

(b) While the majority of atoms revert back to a 4 coordinated structure upon unloading, some

residual damage is still present.

1.2.4 Compressing Si nanostructures

 While the yielding mechanisms occurring during nanoindentation of bulk silicon

have been well investigated, the same cannot be said for nanostructures. A much more

rich and complex yielding system appears to be involved that includes not only the

pressure induced changes, but also dislocations. For the nanostructures, the resulting

deformation mechanisms are influenced by their size and shape as these dictate the

stress fields present within and also increase the interaction and effects due to the

surface.

 Experimental compression of nanoparticles has revealed much evidence to

support dislocation yielding to be the primary yielding mechanism [4, 7]. Upon

compression, numerous excursion events of equal magnitude are observed in the load

vs. displacement plot. Such load drops are often associated with dislocation activity. A

 13

marked increase in the hardness is also observed for repeated loadings suggesting that

whatever permanent deformation has occurred interferes with subsequent yielding. As

dislocation interaction is a well known hardening mechanism, it is plausible that this

hardening is the result of an increase in the number of dislocations that are present

within the confined volumes of the particles. Furthermore, no clear unloading elbows

or kinks characteristic of a reverse phase transformation were reported.

 These works were followed by others that involved using a TEM and an in situ

indenter to directly observe the yielding behavior [44-49]. For the nanoparticles,

regions of plastic damage were observed near the contact, but the nature of this damage

was never addressed as no single dislocation loops were ever separated and no

diffraction peaks indicative of the -Sn phase were observed. The load vs. displacement

found for one of these spheres is shown along with before and after TEM images in

Figure 1.7.

Figure 1.7: (a)+(b) TEM images of a silicon nanoparticle before and after compression with an in

situ nanoindenter. (c) The load vs. displacement for that sphere compression [48].

Direct evidence of dislocations within silicon have been observed within other

nanostructures. Minor, et al. [50] created TEM transparent wedges of silicon and

 14

observed dislocation loops after indenting as opposed to the phase transformation. This

was attributed to the geometry resulting in shear stress concentrations not observed

during bulk indentation. Compression of nanopillars have indicated a size-dependent

brittle-ductile transformation where silicon pillars behaved plastically below a certain

pillar diameter [51]. In situ observations of pillars have also revealed what appears to

be dislocation activity travelling from the indenter down inside the pillars [52].

Simulations of silicon nanostructures have reported a wide variety of different

yielding. The most widely studied structural formation has been silicon nanowires

pulled in tension [53-57]. These revealed that extensive dislocation plasticity is

possible resulting in a ductile fracture of the wires.

 For compression, a wide range of possible yielding behaviors have been

reported. One of the first papers on experimental compression of silicon nanoparticles

also included work related to a silicon nanosphere compressed with MD using the

MEAM interatomic potential [7]. From this, only amorphous damage was observed,

most likely due to the small simulation size and time resulting in extremely fast loading.

Only amorphous damage was also reported by Fang, et al. [58] for MD simulations of

compressed nanocubes using the Stillinger-Weber potential. However, it should be

noted that the total strain and deformation from these simulations was relatively small

and focused only at the initial yielding behavior.

Another series of MD simulations by Valentini and Dumitrica [59, 60] related to

nanospheres of silicon revealed that the Tersoff potential allows for extensive regions of

-Sn to form during compressive loads (either due to uniaxial compression or impact

with a substrate). For the uniaxial compression, this phase transformation was seen to

 15

accompany a hardening behavior at high strains which increased with repeated loadings

at 0 K [60]. Figure 1.8 shows the sphere containing a region of -Sn that remained after

unloading. Annealing this sphere resulted in the -Sn reverting back to a 4 coordinated

structure. With the high velocity particle impact simulations, the spheres and the

substrate were passivated with hydrogen to eliminate free bonds at the surface.

Adhesion was seen to occur only when the velocity was high enough to cause plastic

deformation within the sphere [59].

Zhang et al. [61] also performed MD simulations on silicon nanoparticles.

Comparing results from the Stillinger-Weber and Tersoff potentials, they noted that the

Stillinger-Weber potential shows dislocations as the predominant yielding mechanism

while the Tersoff potential favored the -Sn phase transformation. The applied load

and average compressive stress within the spheres was shown to be comparable for the

two potentials prior to the first yielding events. After this yielding, the two potentials

deviated with the Tersoff reaching considerably larger applied loads. The maximum

hardness reported for a 40 nm sphere were 5.58 GPa for the Stillinger-Weber potential

and 30.9 GPa for the Tersoff potential. Because of this, they concluded that the Tersoff

potential was more consistent with the experimental results.

 16

Figure 1.8: A cross sectional image from an MD simulation of a silicon nanosphere that had been

compressed. The colors denote the relative potential energy of the atoms. Note that the center of

the sphere has a set potential energy and structure indicating that it has transformed into -Sn [60].

Finally, a recent paper by Yang, et al. [57] investigated silicon nanowires in

compression. This gives direct information into the nanopillar compression. Using the

Stillinger-Weber potential, they observed dislocation activity nucleating on the {110}

type planes. As this type of dislocation activity is not known to occur for silicon, it was

attributed to being indicative of possible cleavage.

 17

Chapter Two: Simulation Procedure

2.1 Molecular Dynamics Background

 Molecular dynamics, MD, is an atomistic simulation technique in which the

positions and velocities of all the atoms are updated with time. At its most basic and

simplest form, there are only two steps involved in MD: using potential functions to

calculate the forces acting on the atoms based on the atom’s positions and numerically

integrating the positions and velocities of the atoms based on the forces. While

conceptually simple, MD quickly becomes complex to implement as both of these steps

need to be calculated for every atom at every recursive instance of time. This makes

efficient and powerful computing techniques and equipment a necessity for simulating a

large number of atoms for an extended period of time.

2.1.1 Atomistic potentials

 The forces acting on the atoms can be divided into the internal atom-atom

interactions and the externally applied system constraints. Typically, these forces and

interactions are calculated using mathematical models of the potential energy associated

with the position of the atoms with respect to each other and with respect to the total

system. These models of the potential energy are commonly referred as potentials. The

position dependent force interactions are then found by differentiating the potentials

with respect to position. The resulting force equations are referred to as force fields.

 18

 There are numerous interatomic potentials that have been developed for a wide

variety of materials. These potentials vary from the incredibly simple that only contain

an attractive term and a repulsive term for the interaction between two atoms, such as

the Lennard-Jones potential [62, 63], to the very complex involving terms that depend

on the position, number and composition of all neighboring atoms.

 Conflicting concepts are associated with classical interatomic potentials for MD.

Ideally one would prefer to use the simplest functional form that can represent the

correct material behavior while also being computationally efficient. However,

experience has shown that a particular potential faithfully reproduces only certain

materials under certain conditions. Describing the complete behavior of any one or

more materials inherently requires either a more complex potential or multiple

potentials.

 In addition, classical functions and descriptions of atomic interactions are

chosen as the size scale allows for the electronic behaviors to be glossed over and

averaged out without knowing the specifics. However, the bonding behavior that the

potential functions model are inherently dependent on the electronic properties of the

atoms. Changes in nearest neighbor conditions can change the dominant bonding type

associated with an atom and result in the chosen potential being unsuitable for the new

conditions. This greatly detracts from the possibility of a universal potential ever being

created. But if there was a way to create a series of rules that allow for a conditional

potential, or combination of potentials, to address the different possible bonding types,

the range of effective modeling would be increased.

 19

 The potential that is typically used as an example when describing MD is the

classic and simple Lennard-Jones potential [62, 63]. This potential is referred to as a

two-body potential because it only depends on the distance between two atoms. The

typical form used for this potential is































612

4
rr

E


 (2.1)

Where r is the interatomic distance and  and  are scaling constants with units of

energy and distance respectively. This simple potential is easily differentiable resulting

in a force field equation of:

 









7

6

13

12

224
rr

F


 (2.2)

The first term in the brackets is repulsive, while the second term is attractive. As the

power of the repulsive term is greater than the attractive term, it has little effect at large

r and becomes increasingly predominant as r decreases. Overall, the function mimics

atomic interactions by attracting atoms that are far apart, and then as the atoms get

closer, there is an equilibrium point at r = 2
1/6 below which the function becomes

repulsive preventing the atoms from overlapping each other. At the equilibrium point,

the potential energy between the two atoms is – less than what it would be if the atoms

were not interacting. Surrounding the equilibrium point is a potential well which can

trap atoms and prevent them from separating resulting in an atomic bond.

 While the Lennard-Jones potential allows for an easy understanding of how

potentials work, it is too simple to accurately model silicon as the diamond cubic

structure has angle dependent covalent bonds. Therefore, other potentials have been

 20

developed that model the interaction with multi-body potentials. Two of the most well

known and used potentials are the Stillinger-Weber potential and the Tersoff potential,

both of which are used for this research.

2.1.2 External constraints

 The forces acting on the atoms can also be modified with external constraints.

The use of these constraints depends on the system that is meant to be simulated. As

such, they will be addressed later with the simulation procedures.

2.1.3 Time integration

 As mentioned before, the forces calculated from the potentials are used to

update the position and velocity of the atoms with respect to time. This is

accomplished by relating the mass of and the forces on the atoms to their acceleration.

The accelerations are then numerically integrated to determine velocity and position.

While a number of different methods for this integration exist, the most commonly used

method with molecular dynamics is the Velocity Verlet algorithm [64]. This algorithm

first uses the position, x, velocity, v, and acceleration, a, at time, t, to calculate an

updated position that is Δt later in time

         2

2
1 ttattvtxttx  (2.3a)

Then calculates the forces and acceleration at the new step using the potential functions

before updating the velocity with

          tttatatvttv 
2
1 (2.3b)

 21

This method is ideal for its use with MD as it is simple to calculate, it conserves the

total energy of the system and it has a small error under the right conditions.

2.2 Silicon Potentials

 Having strongly covalent bonds, the crystal structure of silicon at room

temperature and atmospheric pressure is diamond-cubic (DC). This structure, which

consists of the silicon atoms having tetrahedral bonding, cannot be adequately modeled

solely with a pair style potential as pair styles favor closed-packed and symmetric

structures.

2.2.1 Stillinger-Weber potential

 One of the first atomic potentials that adequately modeled the diamond-cubic

structure of silicon was the Stillinger-Weber (SW) potential [18]. This potential is of

the form

    
  


i ij i ij jk

ijkikijij rrvrv ,,32 (2.4a)

 


























































ijijij

ij

q

ij

ij

p

ij

ij

ijijijij
arrr

BArv

ijij




 exp2 (2.4b)

    



























ikikik

ikik

ijijij

ijij

DCijkijkijkijkikij
arar

rrv







 expexpcoscos,,

2

3 (2.4c)

In these expressions, rij and rik are the radial distances between two atoms and ijk is the

angle between the triplet of atoms bonded j-i-k. All other terms are fitting parameters

 22

with epsilon and sigma scaling the energy and length scales respectively allowing the

remainder of the terms to be dimensionless.

 The function v3 is a three-body interaction term that stabilizes the non-closed

packed and non-centrosymmetric DC structure. In particular, the three-body term of the

SW potential calculates the angle between the three atoms in question and adds an

energy that increases as the angle deviates from what is found in perfect diamond cubic,

DC. As this term explicitly depends on the DC bond angle, it undoubtedly favors that

structure over any other. Many of this potential's properties, both positive and negative,

is inherently due to this DC favoritism.

 Although many new silicon potentials have been developed over the last 25

years since the SW potential was first published, it still finds much use in the

simulations of today. This is partially due to the potential's simple form allowing it to

be easily implemented, but also modifiable. It also decently simulates many of the

properties of bulk silicon. For instance, the parameters used were chosen such that the

lattice parameter and cohesive energy of the diamond-cubic structure would match what

is experimentally found. In addition, it has been shown to decently replicate the elastic

constants even though it was never optimized for those values [65, 66]. Atomistic

defects within DC Si are also well modeled as it creates adequate representations of

vacancy and self-interstitial [67-69] structures and has one of the better representations

of low temperature dislocation behavior out of the more common silicon potentials [70].

 The SW potential suffers in its representation of Si structures that do not have

bonding similar to DC. Most notably, it is unable to correctly model surfaces or atomic

 23

silicon clusters and the pressure induced transformation to -Sn is not observed as the

first pressure induced transformation [65].

2.2.2 Tersoff potential

 First published a year after the SW potential, the Tersoff potential [20, 21, 71]

was initially developed to be capable of realistically representing many of the high

pressure silicon phases, including -Sn, and the transformations between them.

Mathematically, this potential has a more complex functional form given by

        







 

i ij

ijijij

n

ij

n

ijijijijc rBrArf n)2()1(

2
1 exp1exp 2

1

 (2.5a)

   
rDR

DRrDR

DRr

rf
D

Rr
c















 

:

:

:

0

sin

1

)(
22

1
2
1  (2.5b)

         



jik

m

ikij

m

ijijkikcij rrgrf
,

)3(exp  (2.5c)

  
     

















2

0

2

2

2

2

coscos
1




ijk

ijkijk
d

c

d

c
g (2.5d)

Once again, all terms except rij, rik and ijk are fitting parameters. At first glance, this

functional form appears to contain only two-body terms, but a closer examination

reveals that  in the attractive component is dependent on atoms i, j and k. fc is a cutoff

function that quickly but smoothly reduces the energy to zero over a short range.

 In its original form, there are two parameter sets developed by Tersoff that are

most commonly used [20, 21]. Commonly referred to as either T2 and T3 or T(B) and

T(C), they offer different advantages and disadvantages. T(B) is better capable of

 24

representing some of the silicon atomic clusters and bulk silicon surfaces than either

SW or T(C). T(C) was created to better match the elastic properties of DC silicon, but

at the cost of the cluster and surface representations. As the mechanical properties of

the material are more important for the current study than surface structures, T(C) was

used exclusively for this work. T(C) has the distinct advantage over SW by allowing

for the -Sn transformation to occur due to an increase in pressure.

2.3 Si-SiO capable potentials

 Modeling a system containing both silicon and silicon dioxide with classical

potentials offers an interesting problem. While each material by itself has been

adequately modeled with a number of different potential forms, there are few successful

efforts at modeling the interactions between the two that have been published. The

bonding within bulk Si and the bonding within SiO2 are so vastly different that the

equations for modeling their interactions are nothing alike. The way that silicon

interacts with other silicon atoms in bulk Si is completely different than how it interacts

with those same atoms in bulk SiO2.

Simply using an Si potential and an SiO potential and placing the two simulated

materials next to each other is no guarantee that the interface would be realistic as many

factors come into play. Should all Si atoms be allowed to interact in the same way, or

should the ones in the oxide be defined as being different to accommodate the different

bonding? If the oxide is handled as a completely different material, how does one

specify the Si-Si and Si-O reactions across the interface?

 25

An extensive search through previous sources reveals only three reported

methods to remove this ambiguity. The first, by Jiang and Brown [72, 73], attempted to

create a composite potential combining SW with the SiO potential by van Buren,

Kramer, and van Satten [74, 75] and adding additional conditional components to allow

the two to mix and interact. The second method, by Watanabe, et al. [76, 77], offers a

modification to the SW potential that allows for SiO structures to correctly form. The

third is by using a much more complex and involved force field, such as the Reax force

field [78-80]. Although ReaxFF offers the promise of possibly being a more complete

and accurate potential, little has been published about the structure and properties

resulting from how it simulates silicon. Because of this, only the first two potentials

were investigated for the work presented here and thus will be discussed.

2.3.1 Jiang and Brown Potential

 The potential created by Jiang and Brown [72, 73] is based upon creating a

simple analytical model combining SW Si-Si interactions with the well used Si-O

interactions of the potential by van Beest, Kramer and van Santen (BKS) [74, 75]. The

Jiang and Brown potential is of the form

     

 



 







i ij jk

ijkikijikij

i

ijji

ij

BKS

i ij

ijij

i

ii

rrvgg

rqqrvgqe





,,

,,

3

2

 (2.6a)

In this formulation, v2 and v3 are respectively the two- and three-body terms of the SW

potential, BKS is the BKS pair potential.

 26

  
6

exp
ij

ij

ijijij

ij

ji

BKS
r

c
rbA

r

qq
 (2.6b)

The charge on every atom is calculated as a function of coordination with the opposite

atom type, with a smoothing function used at the cutoff distance to eliminate

discontinuous behavior.

 

 




















OirHq

SiirHq

q

Sij

ijO

Oj

ijO

i (2.6c)

  


































rr

rrr

rr

rr

rr
rH

s

so

o

os

o

ij

0

cos

1

2
1

2
1  (2.6d)

The additional terms are charge dependent functions designed to integrate the two

different material behaviors given by SW and BKS together. The first, ei, is an

ionization term that adds a penalizing energy to any atom that has a charge

corresponding to more than 4 O neighbors for each Si and more than 2 Si neighbors for

every O.






























otherwise

qq
qq

e
e

o

io

i

o
i

0

1
exp

 (2.6e)

Lastly, g is a bond softening function that weakens the SW Si-Si interaction as the

charges on the incorporated Si atoms increase




































sji

sji

sjisij

qqq

qqq
qqqqg

0

1
exp

1
exp

 (2.6f)

 27

Within this potential, all of the parameters associated with the SW and BKS

components were left unchanged. Fitting was then done for all of the new parameters,

qO, rs, ro, q
o
 based upon placing a single O interstitial impurity in a bulk Si material.

From this, the structure and stability of larger defect complexes were then examined.

2.3.2 Watanabe, Fujiwara, Noguchi, Hoshino and Ohdomari Potential

 This potential, which will be referred to as the Watanabe potential solely for

simplicity, is a modification of the SW potential that allows it to also simulate bulk SiO2

crystal structures [76, 77]. In form, it is identical to the SW potential except that it

contains a coordination-based bond softening function, gij, which acts on the two-body

term for Si-O interactions. The bond softening function in the Watanabe potential is

given by the following expressions

 
 















otherwise

OjSii

SijOi

zg

zg

g j

i

ij ,

,

1

 (2.7a)

  
  

  2

54

32

1 exp
1exp

mzm
mzm

m
zg 


 (2.7b)

where the m terms are parameters fitted to the total Si-O binding energy that was

calculated for different coordination values using ab initio calculations. z is the

coordination number of the O atoms, which uses a modified version of the Tersoff's

cutoff function to smooth the cutoff value

  





















Sij

DDRr

D
DRr

i

DRr

DRrDR

DRr

z

0

1

1

2

/sin

2 


 (2.7c)

 28

In addition to this bond softening function, the choice of parameters has been opened up

from what is typically used with SW potentials. First, the cutoff distance values that are

used in both the two- and three-body terms are no longer constrained to being the same

value. Also, the cos value is not restricted to being just the -1/3 for perfect DC.

Despite these changes, the Si-Si-Si interaction is nearly identical to the original SW Si

behavior, with only one parameter that has been modified. Other researchers have used

the Watanabe potential with all of the original SW parameters showing no major

differences and allowing the bulk Si behavior to be identical to SW for reference [81].

 Despite lacking any ionic terms, this potential has shown remarkably good

behavior for Si-O systems. The structural energies calculated for various Si-O clusters

with changing bond lengths show an excellent fit to molecular orbital theory. In

addition, five of the most common silica polymorphs are shown to be stable and to have

lattice energies that are consistent with the expected stability. Finally, the initial paper

[76] and subsequent work by the same authors and others [77, 81, 82] have shown that

an amorphous oxide layer can be grown on the surface of pure Si that is not only stable,

but consistent with what is experimentally observed.

2.4 Simulation Design

All work was done using the LAMMPS molecular dynamics simulation code

[83] with a timestep of 1 fs. The temperature of the systems was constrained by using a

Nose-Hoover thermostat [84].

 29

2.4.1 Sphere Compression

Four sphere sizes were used with 5, 10, 20 and 34 nm diameters (3265, 26167,

209121, and 1027987 atoms respectively). The 5 nm sphere was analyzed at 0, 300 and

600 K, while the 10 nm and 20 nm spheres were studied at 0 and 300 K. All spheres

were compressed along the [100] crystal direction. During separate simulations the 5

and 10 nm spheres were also compressed along [110] and [111] directions.

The particular version of the Tersoff potential used here is the third of the

originally published parameters [21], which were chosen to give the best fit to the

elastic properties of the diamond cubic phase. For these reasons, this potential is widely

used for MD simulations of mechanically deformed silicon. Two versions of the

Stillinger-Weber potential were investigated: one using the parameters from the original

paper [18], and one where the system’s energy had been scaled to better match real

silicon [65].

Initial sphere creation was accomplished by generating all of the perfect bulk

crystal lattice positions within a geometrically defined sphere. Following this, the

sphere was annealed at 400 K for 1000 ps to relax the surface atoms before quenching

down to 0 K.

Two planar indentation potentials were used to compress the spheres, one placed

above the sphere (related to the direction of the y-axis) and the other equidistant below.

This potential applies a force onto atoms according to their coordinates as given by

2)()(iy yyckyF  (2.8)

where Fy is the force in the y direction that the indenter applies onto each atom, k is a

constant (taken to be 10.0 eV/ Å), y is the y-coordinate for that atom, and yi is the y-

 30

coordinate of the indenter. To insure that both indenters apply a repulsive force when

they contact the sphere, for the upper indenter c = -1 when y ≥ yi and c = 0 when y < yi,

whereas for the lower indenter c = 1 when y ≤ yi and c = 0 when y > yi. The applied

load for the indenters acting on the sphere, P, is then found by summing this indenter

force value over all atoms (P = ΣFy).

Figure 2.1: A side view image of a 5 nm silicon sphere. The dashed lines represent the indenter

potential planes prior to loading.

 Both indenters utilized inward velocities of 0.003125 Å/ps = 0.3125 m/s,

resulting in a total displacement rate that is double this value. In order to save

computation time, this rate was doubled for the 34 nm sphere. The indenters were

allowed to compress the spheres until an engineering compressive strain (total

displacement/diameter) between 0.4-0.6 before the spheres were unloaded at the same

rate. During compression, the linear and rotational momenta of the total sphere were

subtracted from each atom to prevent the sphere from rotating and drifting before and

during compression.

 31

2.4.2 Dislocation Interactions

Edge dislocations were introduced into the system by removing partial planes of

atoms from the middle of the system. The removed atoms were at the center of the

system with respect to the x direction and within the top and bottom ¼ of the y direction

leaving behind two gaps in the crystal each a Burgers vector in width. The system was

then compressed with a strain of -5% in the x direction and held for 1000 MD timesteps

allowing the sides of the gaps to fuse together leaving behind perfect edge dislocations.

The strain in the system was then relaxed. During the MD relaxation, the outer 10 Å of

atoms in the x direction on both sides of the system were constrained and held at their

perfect crystalline positions to discourage the dislocations from moving and leave a nice

layer of atoms for the next step. Periodic boundary conditions were also imposed in the

y direction.

Figure 2.2: A schematic showing how the dislocations were created in the samples. First cuts were

made in the material removing a Burgers vector of planes from the top and bottom 1/4 of the

simulation. The simulation box was then relaxed by compressing it in the x-direction and allowing

the free planes to join resulting in perfect edge dislocations.

 32

Different simulations were set up to study how the dislocations interact with

different surfaces. For the first type of simulation, periodic boundary conditions were

applied in the x direction in order to imitate a bulk material. A second simulation was

performed for which the two edges in the x direction were traction-free. All of the other

simulations then involved introducing the oxide into the system by matching up the

atoms that were constrained during the oxide growth with those that were constrained

during the dislocation formation.

Figure 2.3: The different simulation systems explored. (a) Periodic conditions in the x-direction.

(b) Free surfaces in the x-direction. (c) Oxide added to one or both surfaces in the x-direction.

 To grow the oxide, first a number of oxygen atoms are randomly scattered onto

the free surface forming bonds with the silicon atoms there. After relaxing the system

with MD timesteps, the routine locates the silicon atom that is within bonding distance

of 1-3 oxygen atoms and is positioned closest to the free surface. Once that silicon

atom has been identified, its nearest neighbor silicon atoms are observed looking for a

neighbor that is not saturated with oxygen's. Then an O atom is positioned between the

two Si in such a way that they are both 1.6 Å from the O and the O is at least 1 Å from

any other O. This position is chosen to minimize any local energy spike due to the

 33

additional atom being too close to any other atom. The system, now containing one

additional atom, is then relaxed for 1000 timesteps before the next O atom is added.

 This routine can essentially be seen to provide a leap frog method of oxidation.

Instead of waiting for diffusion to move the oxygen atoms near the surface into the

silicon so more oxygen can react with the surface, the routine places the new oxygen

atoms in positions where the existing oxygen atoms would be likely to diffuse. This

routine still allows for the proper layer-by-layer growth while avoiding the time

associated with diffusion. It also allows for the oxide to form as an amorphous material

without starting with a particular oxide crystal structure.

 To create the various simulations, a block of perfect silicon containing 9480

atoms was constructed. This block was oriented with its x-, y-, and z-axes oriented with

the <110>, <1-11> and <-11-2> crystallographic directions and having dimensions of

85.846 Å by 94.068 Å by 26.606 Å respectively. As this size and direction allowed for

all three directions to be perfectly periodic, this block then served as the basic building

blocks for all of the simulations. The simulations that did not have an oxide were

created in four sizes by adding a number of the basic block together along the x and y

directions resulting in simulations that were 2X, 3X, 4X and 5X of the original block in

both directions.

 The oxide was also grown using this same base block. The oxide routine was

run to oxidize one of the sides in the x direction with periodic conditions in the y and z

directions. The atoms at the other x surface were held fixed in their perfect lattice

positions. The oxidation routine was cycled until over 2000 oxygen atoms were added

resulting in an amorphous layer of approximately 1 nm. Once created, this oxide

 34

containing block could be easily adhered to the dislocation containing systems by

matching up the atoms at the x surfaces that were held fixed during the dislocation

formation with the fixed atoms during the oxidation. This allowed for the oxide to be

simply attached to the systems minimizing the initial stress interactions. This allowed

for simulations of various sizes to be examined without requiring the oxide to be grown

on each separate system. However, it also means that there is some periodicity in the

oxide due to the limited block and simulation sizes. It also has the further complication

that for a corresponding simulation size, the dislocations are farther from the oxide

interface than they would be from the free surface.

Alternative simulation designs were also created by merging the oxide block

with the dislocation by placing non-fixed atomic planes next to each other. This

allowed for systems where the initial distance between the dislocations and the oxide

interfaces were comparable to the distance between the dislocations and the free

surfaces of the oxide free systems. As a consequence, the atoms in the planes which

were merged together were of higher energy for a short period of time until the planes

relaxed.

 The simulations performed to study the dislocation motion were accomplished

by removing the previous constraints and either allowing the system to relax with no

additional constraints, or holding the top and bottom 10 Å in the y direction fixed.

When the top and bottom y surfaces were fixed, it constrained the simulation allowing

for the shear strain of the system being controlled. In particular, simulations were done

either holding the y boundaries at the initial positions, or moving them. For the

simulations with moving boundaries, most were run at 300 K for 1000 timesteps to help

 35

relax the system before the constrained atoms were displaced at a constant rate in the x

direction. This resulted in a constant strain rate being applied on the system.

 After simulating, the positions of the dislocations were identified by using the

potential energy of the atoms to locate the defect atoms at the dislocation core. The

position was then estimated by finding the center of mass in the x and y directions for

these identified atoms.

 Growth of the oxide was accomplished through a routine developed by Dalla

Torre, et al. [82]. This routine mimics the layer by layer growth of oxide on a silicon

surface. The routine was employed to form the oxide because it is practically

impossible to simulate diffusion on the timescales associated with MD simulations

without raising the temperature artificially high.

2.5 Phase Definition

 One of the challenges with using molecular dynamics to identify phase

transformations is determining a proper way of identifying and characterizing the

different crystallographic structures. Basic crystallography identifies a crystal as

consisting of a periodic lattice that can be represented by a basic unit cell that is

repeated indefinitely. However, molecular dynamics involves a limited number of

atoms, so unless periodic boundaries are used, no infinite crystal can be created thus

limiting the overall size for which a crystal or grain can reach. This brings up the

question of how small a region can be before it is no longer periodic enough to be

considered a crystal structure.

 36

 Furthermore, most of the older commonly used potentials, such as the Tersoff

and Stillinger-Weber potentials, are functions involving only nearest neighbors. Thus

the energy associated with a given atomic arrangement only depends on the local bond

structure and not on any larger scale periodicity. This makes it relatively easy and

useful to the understanding of why the simulations are acting in a particular way by

finding a method to characterize the bond structure. However, while a particular crystal

structure may be composed of atoms all with identical bonding arrangements, simply

having all the atoms within a system have that bonding arrangement does not guarantee

that the resulting overall structure is the same, or even periodic.

 Further complications to the understanding of the atomic structures seen in these

simulations and experimentally arise from the use of the term amorphous material.

Simply defined as any structure that lacks long term order, it broadly encompasses a

wide variety of possible arrangements. The disorder present within these amorphous

regions can vary greatly. On the highly disordered end, the structure can be so damaged

that there is no uniform bond structure present. At the other end of the spectra, the local

structure and bond order can be consistent throughout, but the long range order is

disrupted or distorted.

 The lower end amorphous description brings up some important questions in

terms of molecular dynamics simulations of structures. As MD simulations offer

snapshots in time, the local atomic deformation associated with an applied strain can be

directly observed. This can allow for images of highly elastically deformed atomic

structures being observed. If the strain is not uniform throughout, large gradients can

form deforming some regions more than others, thus slightly disrupting the overall long

 37

range order. Now, if the damage is purely elastic, then removing the applied strain

should allow it to revert back to the perfect crystallographic structure. But if plastic

damage has occurred, it could result in residual strain being present within the elastic

region, leading to the inevitable question of whether this region classifies as amorphous

or not.

2.6 Characterization Techniques

Phase identification was aided using a parameter related to the angles between

the bonds of all of the nearest neighbors. This “angular” parameter was taken to be [85]

  
 


N

j

N

jk

DCijk

bN 1 1

2)cos(cos
1

 (2.9)

where N is the number of nearest neighbors that atom i has, θijk is the angle between

atoms i, j, and k, θDC is the bond angle for bulk diamond cubic, and Nb is the number of

bond angles that have been summed. In essence, the difference in the cosine of the

bond angle with respect to the perfect diamond cubic structure is squared, and then

averaged for all bond pairs around a given atom. For the results presented here, a cutoff

of 3 Å was used to determine the nearest neighbors included in this expression. This

angular parameter is dependent on each atom's coordination number, but is

advantageous as it can distinguish between multiple phases and defects that have the

same coordination number. The parameter’s formulation is related to the three-body

term of the Stillinger-Weber potential [18].

Dislocation activity was monitored primarily with the slip vector parameter [86],

given by

 38

  



N

ij

jiji

s

i RR
N

S 0

,,

1 
 (2.10)

where N is the total number of nearest neighbors to atom i, Ns is the number of

neighbors that are on an adjacent slip plane to atom i (e.g., Ns = 1 if slip occurs on an

{111} diamond cubic lattice), 0
, jiR


 is the vector from atom i to its neighbor j at an initial

unstrained reference configuration, and jiR ,


 is the corresponding vector at the current

configuration. By finding the relative displacement of the nearest neighbor atoms j with

respect to a given atom i, it can be determined if a plane neighboring atom i has slipped

and in what direction. Dividing by -Ns scales the vector’s magnitude so that it will be

equal to the Burgers vector of the dislocation that caused the slip. Appendix One

contains the code of the program used to analyze the sphere compressions, which

includes the calculation of the angular and slip vector parameters.

 Figure 2.4 shows both the angular parameter and the slip vector in action. The

colored spheres show the positions of the atoms with angular values between 0.12 and

0.16. As the angular parameter is not independent of the coordination number, nearly

all of the atoms with angular values within this range also had a coordination of 5. The

thin white arrows show the slip vectors that have magnitudes of approximately 3.84 Å

corresponding to the Burgers vector of a perfect dislocation. A cluster of similarly

colored atoms with angular values around 0.13 is visible in the lower left corner of the

image revealing a region that had transformed into BCT5. Near the upper right of the

image is a line of atoms colored by angular values between 0.13-0.15 corresponding to

the atoms at the core of a dislocation. This shows that even though the BCT5 region

and the atoms at the dislocation core both have coordination number 5, the angular

 39

parameter is able to distinguish between the two. The white arrows going from the

bottom of the image up to the dislocation core then show the path that the dislocation

had traveled, along with the direction of the Burgers vector for that dislocation.

Figure 2.4: An image showing how the angular and slip vector identification parameters work.

The colored spheres represent atoms with angular values between 0.13-0.15 allowing for the core of

a dislocation and a region of BCT5 to be identified. The white arrows show the direction of the slip

vectors corresponding to atoms that have slipped approximately one Burgers vector from their

neighbors indicating the path that the dislocation had traveled.

 40

Chapter Three: Tersoff Potential and Phase Transformations

 The focus of this chapter is on the results obtained from the simulations that

used the Tersoff atomistic potential. While both this chapter and the next focus on

compressions of silicon nanospheres, it is important to separate the results obtained

from the two different potentials as they result in different atomistic behaviors. As

previously mentioned, the Tersoff potential was designed to best represent the pressure

induced phase transformations in silicon. Therefore it is an ideal choice for

investigating how the formation of -Sn affects the measured mechanical properties.

3.1 Contact Area Analysis

One of the great unknowns associated with the experimental study of

nanoparticles under compression is the contact area between the indenter and the

particle. This contact area is necessary to know in order to accurately calculate the

hardness of the nanoparticles and the associated stresses within during any applied load.

However, there is no method for directly measuring this contact area experimentally.

The specific shape and dimensions of the indenter tip can be worked out using the

techniques developed for nanoindentation, but the same cannot be done for the particles

themselves. The only “direct” experimental method is to use images from in situ TEM

to visually measure the contact area, assuming that the tip is directly centered over the

particle. With this sole exception, the contact area must be assumed to fit one of the

models that have been developed.

 41

 So far, four different models have been investigated for use with experimental

results for predicting the contact area. These four models are referred to as the Hertzian

model [87], the geometric model [7], the cylindrical model [47], and the harmonic mean

[88] and are given by the equations

RaH
2

12  Hertz; (3.1)

4

2
2 

  RaG Geometric; (3.2)

 


R

R
aC

23

4 3
2

 Cylindrical; (3.3)

11

2
 


CH

HM
aa

a
 Harmonic mean. (3.4)

Within these models, a is the radius of the contact area, is the measured displacement,

and R is the sphere radius. The Hertzian model is the elasticity solution for a sphere

contacting a flat plane at low strains. The Geometric model is the area of intersection

between a sphere and a plane. The Cylindrical model is the contact area associated with

the compression of a cylinder. The use of the cylindrical model is based upon the

concept that after sufficient deformation, the spheres can be approximated as cylinders.

Finally, the harmonic mean is calculated using the Hertzian and Cylindrical models to

average between the low strain Hertzian behavior and the high strain cylindrical

behavior.

 Molecular dynamics simulations offer a unique opportunity for investigating the

contact area models and determining a more refined fit. The specific positions of all the

atoms within the system are known along with the position of the indenters allowing for

 42

the contact area to be numerically calculated. Through the atomic interactions, the

simulations account for both the elastic and plastic responses of the nanoparticles at low

and high strains. It also accounts for any drastic changes in shape that the current

geometric based models cannot handle. Of course, any fits to the data are still

approximations based upon the assumptions that the particles are initially perfectly

spherical, and that the material response given by the potential is adequately realistic.

 The radius of the contact area, a, between the spheres and the plates was

calculated by identifying the atoms (Na) that were within 0.1 Å from each of the

indenters. By identifying the center of mass (XC.M. and ZC.M.) for that collection of

atoms, the contact radius was found with a formula given by Vergeles et al. [89]

     



aN

i

MCiMCi

a

ZzXx
N

a
1

2

..

2

..

2 2
 (3.5)

This measured contact radius is shown in Figure 3.1(a) for the 20 nm sphere and Figure

3.1(b) for the 10 nm spheres at 0.01 K. Along with measured contact radius squared are

the predicted values for both the elastic Hertzian model and the Geometric model.

Initially, at low loads the contact radius shows a discrete nature as its value stays

constant for a number of steps before jumping to a larger value. See Figure 3.1(a). This

appears to be nothing but a geometrical artifact of the sphere design and indenter

potential used. The top and bottom-most atomic planes of the spheres consist of only a

handful of atoms resulting in the initial contact area being relatively small. On

continued loading, the outermost atomic layers are pushed far enough into the sphere

that the indenters then come into contact with the next inward planes of atoms. When

 43

this occurs, the contact area suddenly increases. The effects of this jump in contact area

decreases with increasing sphere size and displacement.

0

2

4

6

8

10

12

0 0.5 1 1.5 2

C
o

n
ta

c
t
ra

d
iu

s
 s

q
u

a
re

d
,a

2
(n

m
2
)

Displacement,  (nm)

Hertz Elastic Model

Geometric Model

20 nm, 0 K [100] Compression

(a)

0

5

10

15

20

0 1 2 3 4 5
C

o
n

ta
c

t
ra

d
iu

s
 s

q
u

a
re

d
, a

2
(n

m
2

)

Displacement, (nm)

Hertz Elastic Model

Geometric Model

10 nm, 0 K [100] Compression

10 nm, 0 K [110] Compression

10 nm, 0 K [111] Compression

(b)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

S
ta

n
d

a
rd

iz
e
d

 c
o

n
ta

c
t
ra

d
iu

s
 s

q
u

a
re

d
,

(a
/R

)2

Stanardized displacement, /R = 2e

D=0.8

D=0.45

(c)

Figure 3.1: The squared contact radius vs. displacement. (a) At low displacements for the 20 nm

diameter spheres (0.01 K shown), the contact area jumps due to the surface steps resulting in

discontinuous behavoir, but still loosely follows the Hertz model. (b) As seen with the 10 nm

diameter data at 0.01 K, at moderate displacements, the curves fall directly between the elastic and

the geometric models. At high displacements, the contact area begins to increase at a higher rate

deviating from both models. The high displacement deviation is more profound for the 300 K

compressions (not shown here). (c) The contact radius squared for all of the data shown with the

new model fit from Equation (3.4).

 Figure 3.1(a) shows that for the 20 nm diameter sphere at small displacements,

the contact radius behavior still contains the discontinuous jumps, but is smooth enough

to show a general trend following the Hertzian model. This is the expected behavior as

only elastic behavior is seen within the sphere during this period. At moderate

displacements (~1-3.5 nm for the 10 nm spheres in Figure 3.1(b)), the measured values

for all three orientations lie between the Hertzian and geometric values, with the change

in contact radius with displacement closer to the Geometric model. While neither

model gives a “best fit” to the measured contact radius, they can be seen to offer an

upper and lower bound during this displacement range. The largest displacements

(Figure 3.1(b)) reveal that the spheres no longer follow either model as the contact area

 44

begins to increase at a greater rate than either model predicts due to neither model

accounting for expansion of the sphere in the uncompressed directions.

 From these comparisons, it is possible to develop a more accurate, but yet still

simple model for the contact area behavior. One method would be to linearly mix the

two theoretical models. This results in an expression such as

 

DD

R
R

D

a

D

aD
a GH

422

1 3222
2 







 (3.6)

where D is a fitting constant with units of distance. This equation is a third-order

polynomial fit containing only one unknown that given the appropriate choice of D fits

the previously mentioned behavior of the measured contact area for all displacements

observed here.

 Conceptually, at first glance Equation (3.6) appears to increase the relative

amount of plastic to elastic behavior as the displacement increases. However, as neither

of the base models accounts for the sphere's incompressibility at large displacements,

this conceptual argument is faulty. This new model gives an empirical fit to the data

even though it is derived from the two mathematical models.

 As seen in Figure 3.1(c), there is considerable variation in the values measured

for the contact area under the different conditions studied here. However, comparing

Equation (3.4) to the measured values reveals that a D value of 0.8 R offers a decent fit

to nearly all of the data. The only clear exceptions are the [111] compressions at

elevated temperatures, which favor a D value closer to 0.45 R. As the constant D is

fitted to the entire strain range, this variation due to the loading direction could depend

on either changes in the plastic behavior or anisotropy in the elastic constants and

 45

crystal structure. With either value of D, the general trend given by Equation (3.4)

better predicts the measured contact area than either the Hertzian or Geometric models

for the full displacement range between 0 ≤ δ ≤ R.

 Higher strains were also investigated with one simulation of the 10 nm sphere

compressed along the [100] direction at 300 K. Figure 3.2 shows the contact area

measured for this sphere along with all of the models discussed previously. It is

observed that the Hertzian and Geometric models, which do not account for the

incompressibility of the spheres, reach a maximum contact radius equal to the radius of

the sphere. Because of this, the linear mixing also suffers from this limitation and is

inadequate for compressions over 0.5 strain. The cylindrical model is seen to always

overestimate the contact area at all strains. As for the harmonic mean, it is seen to be

comparable to the geometric model at low strains but remains consistent with the

measured simulation data up to roughly 0.5 strain. Above this it does deviate from the

measured data, but it still has the correct trend of sharply increasing. From this, it is

seen that the harmonic mean does offer the best fit to the measured contact area.

 With the high strain data, another attempt was made to better model the contact

area. Even though the cylindrical model overestimates the contact area at all strains, it

still follows the general trend in behavior. Therefore, an appropriate model for the

spherical compression could be obtained by modifying the expression for the cylindrical

compression. One possible modification was found where the cylindrical model is

simply multiplied by the strain to the 1/3 power. This allows for the contact radius to be

zero at zero strain and decreases the modeled contact radius at higher strains. It is seen

that this simple adjustment provides a good fit up to a strain of 0.7.

 46

0

20

40

60

80

100

120

140

0 0.2 0.4 0.6 0.8

C
o

n
ta

ct
 R

ad
iu

s
(a

),
 A

Stain (/2R)

Cylindrical

Hertzian

Geometric

Cylindrical*(e)1/3

Harmonic Mean

Figure 3.2: The measured contact area out to a strain of 0.9 compared to various contact radius

models.

3.2 Measured Load and Stress

 The load vs. displacement curves obtained from the 10 nm diameter spheres are

shown in Figure 3.3. Similar compression behavior is observed in the 5 and 20 nm

diameter spheres, which are not shown. For a given orientation, the load at small

displacements is nearly identical at the different measuring temperatures corresponding

to the spheres behaving elastically. Following this, the higher temperature runs deviate

from the 0.01 K curve (e.g., for the 10 nm spheres the 300 K load is less than the 0 K

load for displacements greater than 1-2 nm.) This indicates that yielding has occurred

in the higher temperature runs resulting in a substantial change in the loading rate. For

the 0.01 K curves, the [100] compression shows a similar drop in slope indicating

yielding followed by a sharp peak in the applied load at high displacements, whereas

 47

the [110] and [111] compressions continue to increase fairly steadily throughout the

loading with the occasional drop indicating some form of yielding. These two

behaviors result in the maximum load near 0 K being approximately 2 times greater

than the maximum loads at the higher temperatures for all three orientations.

L
o

a
d

,
P

 (


N
)

Displacement, (nm)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5

Lo
ad

,P
(

N
)

Displacement,  (nm)

10nm diameter [100]

0 K
300 K

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5

Lo
ad

,P
(

N
)

Displacement,  (nm)

10nm diameter [110]

0 K
300 K

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5

Lo
ad

,P
(

N
)

Displacement,  (nm)

10nm diameter [111]

0 K
300 K

Figure 3.3: The load vs. displacement curves for all 10 nm simulations. Note that the maximum

force is nearly twice as high for the 0.01 K simulations than it is for the other higher temperature

simulations.

 The averaged contact stress (P/πa
2
) was also calculated for all of the samples

and is shown in Figure 3.4 for the 10 nm spheres plotted vs. compressive strain of the

sphere (/2R). The general behavior of the contact stress on increasing strain was that

one large peak or a series of smaller peaks would initially appear at low strains

corresponding to the jumps in the radius of the contact area mentioned above. After

these peaks, the stress values would drop before beginning to linearly increase again

indicating that the material is still behaving elastically. Between strains of 0.1 and 0.2,

the behaviors of the 0.01 K and higher temperature simulations are seen to deviate from

each other. The contact stress in the 0.01 K runs plateaus and remains close to the

 48

maximum value reached, while the 300 and 600 K runs have stresses that reach a

maximum value before steadily decreasing with additional strain indicating a softening

behavior.

0

5

10

15

20

25

0 0.1 0.2 0.3 0.4 0.5

C
o

n
ta

ct
 S

tr
e

ss
, P
/
a
2

(G
P

a
)

Strain, /2R

10nm diameter [111]

0K
300K

0

5

10

15

20

25

0 0.1 0.2 0.3 0.4 0.5

C
o

n
ta

ct
 S

tr
es

s,
 P
/
a
2

(G
P

a)

Strain, /2R

10nm diameter [110]

0K
300K

0

2

4

6

8

10

12

14

16

18

0 0.1 0.2 0.3 0.4 0.5

C
o

n
ta

ct
 S

tr
e

ss
, P
/
a
2

(G
P

a
)

Strain, /2R

10nm diameter [100]

0K
300K

C
o

n
ta

c
t
S

tr
e

s
s

,
P

/
a

2
(G

P
a

)

Strain, /2R

Figure 3.4: The contact stress vs. engineering strain curves of the 10 nm diameter simulations.

 The hardness values reported from the experimental results [7] were taken to be

the maximum load for a given compression divided by the calculated contact area. This

definition is identical to that of the averaged contact stress here allowing the two values

to be compared directly. Experimentally, for a single load-unload, the hardness for bulk

silicon is around 12 GPa while the reported hardness values for spheres varying

between 19-46 nm in radius and unknown orientations were 10-40 GPa [7]. Repeated

loading showed an increase in hardness suggesting that the spheres become harder as

the load increases, or as the plastic damage increases.

 The maximum stress values measured from these simulations do not vary by

much between the temperatures: 16-24 GPa for the 0.01 K compressions vs. 14-22 GPa

for the 300 and 600 K compressions. However, the contact stress values at the

 49

maximum strain are quite different, with 14-20 GPa at 0 K compared to 7-9 GPa at 300

K. This matches with the difference in the load vs. displacement curves in Figure 3.2,

where the maximum load at 0.01 K is approximately twice what it is at 300 K.

 The maximum contact stress values from the simulations are a decent match to

the experimental hardness values, with values ranging from the bulk silicon value to

roughly 2 times the bulk value. A discrepancy is seen, however, in that from the

experiments, the hardness increases slightly as the load increases, whereas the 300 K

simulations show a marked decrease in the contact stress upon increased displacement.

This indicates that the simulations presented here using the Tersoff potential at ambient

temperatures fail to give the large hardness values associated with the experimental

spheres of this size.

 The stiffness was also calculated for the 10 nm diameter spheres at the

maximum displacement by evaluating the initial slope of the unloading curves from the

stress vs. strain plots. At 0.01 K, the values for unloading modulus for the [100], [110]

and [111] directions respectively were 154, 236, and 252 GPa, while at 300 K were 103,

117 and 144 GPa. These show that the simulations performed at 0.01 K were 50 to

100% stiffer at their maximum loadings than the similar runs at 300 K.

3.3 Observed Phase Transformations

 The lattice and elastic constants for DC, BCT5 and -Sn were calculated near 0

K and are included in Tables 3.1, 3.2 and 3.3 respectively. In regards to BCT5, the

energy and structure is seen to be slightly closer to the first principle calculations with

the Tersoff potential than with the Stillinger-Weber potential. Using the Tersoff

 50

potential also produces a very good agreement for the structure of -Sn. In addition, it

has been previously shown that the Tersoff potential correctly predicts the pressure and

resulting volume changes associated with the transition from DC to -Sn [65].

Table 3.1: The lattice parameter and elastic constants for the diamond cubic structure of silicon.

 Tersoff [65] Tersoff (This work) Experimental [65]

a (Å) 5.432 5.432 5.429

E (eV/atom) -4.6297 -4.63 -4.63

C11 (GPa) 142.5 139.7 167

C12 (GPa) 75.4 74.1 65

C44 (GPa) 69 69.1 81

Table 3.2: Lattice constants and elastic constants for the BCT5 phase.

Plane wave
pseudopotential [17] Stillinger-Weber [17] Tersoff (This work)

a (Å) 3.32 3.3544 3.298

c (Å) 5.97 6.5148 6.468

E (eV/atom) -4.41 -4.24 -4.419

C11 (GPa) 144 415 162

C12 (GPa) 124 243 108

C13 (GPa) 45 139 76

C33 (GPa) 160 208 205

C44 (GPa) 35 40 49

C66 (GPa) 63 101 143

Table 3.3: The lattice constants and elastic constants for the -Sn phase of silicon.

 Tersoff [65] Tersoff (This work) Experimental [11]

a (Å) 4.905 4.903 4.686

c (Å) 2.57 2.568 2.585

E (eV/atom) -4.3027 -4.3023

C11 (GPa) 297

C12 (GPa) 60

C13 (GPa) 39

C33 (GPa) 378

C44 (GPa) 36

C66 (GPa) 29

 51

 A study of the ideal positioning of the atoms in different silicon phases allowed

for a determination of appropriate values of the angular parameter for each phase. From

this, diamond cubic, BCT5 and -Sn have angular values of 0, 0.12 and 0.18

respectively. It should be noted that this value is but a measure of how far the bonds

around a given atom are from the perfect diamond cubic structure and elastic strain will

affect the value. However, as phases will have particular bond orientations their ideal

structures will have specific angular values. An atom that has an angular value similar

to the ideal value for a given structure and the correct coordination number can then be

said to have the bonding characteristic of that phase. While the angular value might not

be unique to a given phase, i.e. diamond cubic and hexagonal diamond both read as 0, it

is a useful asset in identifying regions that can be examined closer for phase

confirmation or in obtaining an estimate of the amount of a given phase that is present.

 When compressed along the [100] crystalline orientation at 0.01 K, the 5 and 10

nm spheres first behaved elastically, then yielded by disordering at the high stress

regions near the contact areas. Cross sections of the 10 nm sphere are seen in Figure

3.5(a, b). Further compression resulted in the disordered region growing outward and

surrounding the core. Small clusters of BCT5 were identified within the disordered

regions. When the displacement was high enough that the disordered regions created by

the top and bottom plates reached each other, the core region began transforming to -

Sn. The -Sn core continued to grow up to unloading and remained after unloading.

The final structure was seen to consist of three layers: a -Sn core surrounded by a

disordered region, which in turn was surrounded by elastically deformed DC.

 52

Figure 3.5: Cross sectional images using the angular parameter to highlight the phase changes seen

during [100] compression of 10 nm diameter spheres. (a) 0.01 K compression at 3.3 nm

displacement resulting in green (mid grey) regions of BCT5. (b) 0.01 K after unloading showing a

yellow (light grey) -Sn core. (c) 300 K compression at 2.9 nm displacement. (d) 300 K compression

at the maximum displacement (e) 300 K after unloading revealing that a large amount of the -Sn

had relaxed back to a four coordinated phase colored in blue (dark grey).

 Figure 3.5(c-e) shows that for [100] compression at 300K in the 10 nm sphere, a

similar yielding behavior resulted with disordered regions leading to the formation of -

Sn in the core of the sphere at large displacements. However, there was a noticeable

increase in the scatter of the atomic behavior throughout both the diamond cubic and -

Sn regions due to thermal fluctuations. Increasing the sphere size to 20 nm in diameter

still resulted in regions of -Sn, but the morphology differed by showing it initially

forming close to one of the contact areas as opposed to the sphere's center.

 Upon unloading, all of the [100] compressed spheres at 300 K exhibited

extensive relaxation as the -Sn began to revert to a 4 coordination structure, visible in

Figure 3.5(e). To better characterize the relaxed region, a radial distribution function,

 53

RDF, was calculated for the atoms for the last recorded timestep of the 10 nm sphere

(the same timestep shown in Figure 3.5(e)). RDF was used as it has been shown to

allow for a distinction between DC and the other relaxed silicon phases commonly

referred to as Si-III (bc8) and Si-XII (r8) [24]. All three of these phases have a

coordination number of 4 (using a cutoff distance of 3 Å) but can be distinguished from

each other by having different next nearest neighbor distances which would show up as

distinct peaks within the RDF. Figure 3.6 shows the RDF for only the atoms with a

coordination number of 4 revealing 2 broad peaks that correspond only to DC (2.35, and

3.84 Å) and no distinct peaks characteristic of either Si-III or Si-XII (3.2-3.45 Å). The

broadness of the peaks suggests that at this timestep, the region is disordered/deformed

classifying it as an amorphous phase that is close to the DC structure.

0

1

2

3

4

5

6

7

8

2 2.5 3 3.5 4

R
a

d
ia

l
D

is
tr

ib
u

ti
o

n
,

g
(r

)

Interatomic distance, r (Å)
Figure 3.6: Radial distribution function for the 4 coordinate relaxed phase of the final timestep of

the 10 nm [100] compressed sphere at 300 K. Only peaks for DC at 2.35 and 3.84 Å are seen and no

distinguishing peaks are seen between 3.2 and 3.45 Å that would indicate one of the other known

relaxed silicon phases. The nearest neighbor cutoff value used to isolate the DC phase was 3 Å

resulting in the sudden step at this value.

 54

 Interestingly, almost no -Sn was seen resulting from compression in either the

[110] or the [111] directions. Cross sections of these compressions in the 10 nm

spheres are given in Figure 3.7. Besides the lack of -Sn, the most notable aspect of

these results is the vast difference in behaviors at the two temperatures. For the [110]

loading, the 0.01 K runs (Figure 3.7(a-b)) showed large amounts of elastic strain prior

to the amorphous yielding compared to the 300 K runs (Figure 3.7(c-d)). In fact, the

elastic strain for the [110] orientation at 0.01 K was high enough that the effective

coordination number increased to 6 at the high stress regions prior to yield (Figure

3.7(a)). However, the greatest difference in behavior due to changing temperatures is

seen in the [111] compression tests. At 0.01 K, the high loads applied while the sphere

is still elastic allows for the resulting yield to occur throughout the entire sphere as

shown in Figure 3.7(e). At 300 K, yield occurs almost immediately upon contact and

remains localized near the indenter-sphere interface leaving the center nearly

undeformed shown in Figure 3.7(f).

 55

Figure 3.7: Cross section images of 10 nm diameter spheres colored with angular values. (a) 2.5 nm

displacement of [110] compressed sphere at 0.01 K resulting in regions of high elastic strain that

appear different with the angular parameter due to the measured coordination increasing to 6. (b)

Post compression of the [110] 0.01 K sphere with no distinguishable regions of a particular phase.

(c) 1.7 nm displacement of [110] compressed sphere at 300 K showing that yield occurs much

earlier than at 0.01 K preventing the extensive elastic behavior seen in (a). (d) Post compression of

the [110] 300 K sphere also with no distinguishable regions of a particular phase. (e) Post

compression of the [111] 0.01 K sphere showing disordered material throughout. (f) Post

compression of the [111] 300 K sphere revealing disorder only at the surface near the contact areas.

 The coordination number and the angular parameter values were also used to

quantify the amounts of the different phases present. This was accomplished by

counting the number of atoms with the correct coordination number for a particular

phase along with an angular value within a range about the ideal value. For instance, -

 56

Sn was taken to be atoms that had 6 nearest neighbors and an angular value between

0.17 and 0.25. Although this analysis produces a specific value, it should be considered

as a rough estimate as it does not take long range order or elastic strain into account.

 Results in Figure 3.8 show that for [100] compression, the -Sn quickly

increases in concentration at the higher strains and approaches nearly 10% at the

maximum strain. During the initial unloading, the elastic strain is released from the

sphere resulting in the measured -Sn value increasing for a short period as strained -

Sn relaxes to its ideal configuration. Following this, the -Sn in the 0.01 K simulation

levels out whereas the 300 K simulation shows a marked decrease due to the reverse

phase transformation. The values calculated for the [110] and [111] orientations show

only 1 and 2 % respectively for the atoms reaching the criteria for -Sn, confirming the

results of the visual analysis.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 0.1 0.2 0.3 0.4 0.5

F
ra

c
ti

o
n

 
-S

n

Strain, /2R

10 nm diameter [100]

0 K
300 K Unloading

Loading

Figure 3.8: Fraction of -Sn plotted vs. strain for the 10 nm diameter [100] compressed spheres.

 57

 The concentrations of DC and BCT5, along with -Sn as a function of strain are

shown in Figure 3.9 for the [100] compressed 10 nm sphere at 300 K. Prior to loading,

only 90% of the atoms in the sphere register as DC. The 10% classified as other at this

point is due to the surface atoms being excluded for not having 4 nearest neighbors. At

a strain of 0.2, the fraction of DC is seen to begin to rapidly decrease, while a small

amount of BCT5 begins to form. The first -Sn forms soon after this, but appreciable

amounts do not appear until roughly a strain of 0.3. The BCT5 concentration decreases

slightly when -Sn forms. After a strain of 0.4, -Sn continues to increase steadily

while both BCT5 and DC decrease. At the maximum strain, 45% of the material is not

classified as being one of the three phases with -Sn occupying roughly 9%, BCT5

roughly 13%, and DC roughly 33%. Upon unloading, an initial increase in all of the

values is seen as the sphere elastically relaxes allowing more atoms to be counted as a

particular phase. Further unloading shows the amount of DC increase and the amount

of -Sn decrease due to the reverse phase transformation.

 58

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 41 81 121 161 201 241 281 321

A
to

m
ic

 f
ra

c
ti

o
n

 o
f

th
e

 p
h

a
s

e
s

Strain, /2R

Other

DC

BCT5

-Sn

0 0.1 0.2 0.3 0.4 0.5 0.4 0.3 0.2

Load Unload

Figure 3.9: The progression of the estimated fractions of the different phases as seen within the 10

nm diameter [100] compressed sphere at 300 K. The solid vertical line marks the maximum

displacement, after which the sphere is unloaded.

 Together, the results suggest a different explanation for the hardening behavior

seen by Valentini et al. [60] for Si sphere compression modeled with the Tersoff

potential. For all orientations, the 0.01 K compressions show that very large contact

stresses are reached and the applied load is steadily increasing all the way up to

unloading. In contrast, the 300 K compressions initially behave elastically, but then

clearly yield with little hardening afterwards. Furthermore, the -Sn transformation was

seen during the [100] compression at both 0.01 K and 300 K, but was not present during

compression for the other orientations. This suggests that the high contact stresses are

independent of the -Sn phase transformation. Instead, it appears that these high

 59

contact stress values are due to the Tersoff potential having a high resistance to plastic

yielding for 0.01 K simulations. Since yield stress generally scales with modulus, this

would be consistent with the observations in Figure 3.4 and of the unloading slopes at 0

K being greater than those at 300 K for all three orientations even when little -Sn is

present.

 Even though the -Sn transformation is widely accepted as occurring

experimentally during indentation of flat silicon surfaces in different orientations [27-

29, 31], no direct evidence of the transformation, either as elbows in the unloading

curve or the presence of other phases in a diffraction pattern, has been observed for

small compressed silicon nanoparticles [4, 7, 44, 49]. This was for spheres less than

about 100 nm in diameter. The simulations presented here show that -Sn will only

form within the nanospheres when compressed along the [100] crystallographic

direction. From the experimental results, the particles' orientations are unknown with

respect to the compression direction and assumed to be random due to the fabrication

technique [7, 44]. Therefore, it follows that many of the nanoparticles will not undergo

the -Sn transformation as their orientation is not favorable. Conversely, if the

orientation is the only decisive factor, it is possible that some of the particles would

show evidence of the transformation.

As one representation of the -Sn structure is as a tetrahedral compression of the

DC structure along one of the <100> directions, it makes sense that [100] compressions

result in the formation of this phase. However, for the other orientations, the behavior

is different within the compressed spheres than it is for indented bulk silicon suggesting

that the spherical geometry is less favorable to the formation of-Sn. The most notable

 60

difference between the two geometries is that the sphere is much less constrained in the

directions normal to the applied load than an indented flat surface is. This allows for

the sphere to easily expand in these directions, as seen with the contact area analysis.

Because of this the hydrostatic pressure within the spheres will be less for a given

loading than bulk indentation potentially making the -Sn transformation less likely. It

also follows that the formation of-Sn during compressions of the other orientations

may become more likely as the particle size increases. As this is a qualitative

assessment, future work would be necessary to determine exactly how these stress states

differ.

 It should also be noted that there are considerable differences between the

simulation and experimental conditions. The largest simulations presented here are half

the size of the smallest particles that have been experimentally compressed. In addition,

the rate of compression is quite different: Nowak et al. reported an experimental

displacement rate of 10 nm s
-1

 resulting in compression runs around 10 seconds [49],

whereas the displacement rate of 6.2510
8
 nm·s

-1
 for the simulations resulted in total

compression runs lasting around 10-20 nanoseconds. Either of these factors could

greatly influence the mechanical response and make different yielding mechanisms

more favorable.

3.4 Hardening at High Strains

The works by Valentini, et al. [60] and Zhang, et al. [61] find large stresses and

hardness values associated with higher strains than what were investigated in sections

3.2 and 3.3. In particular, both papers find that there is a pronounced hardening during

 61

strains of 0.4 to 0.6 in which large regions of -Sn are present within the core of the

compressed spheres. Therefore a hardening behavior may be associated with -Sn at

high compressive strains.

To explore this possibility, data obtained at higher strains was examined. In

addition to the 5 nm spheres which were compressed up to strains of 0.6, the 10 nm

sphere was also compressed along the [100] direction at 300 K up to complete

compression. The average compressive stresses along the compression direction within

the spheres were calculated by averaging the per atom stress obtained from the virial

formula over the entire sphere size. This allowed for a direct comparison with the

results given by Zhang, et al. [61]

Figure 3.10: (a) The average stress vs. strain previously reported for a variety of Si Tersoff sphere

simulation sizes. (b) A comparative plot of the stress vs. strain obtained during this work showing a

clear difference in behavior near 0 K and at 300 K. Note that the 0.01 K plot is consistent with the

plots in (a).

The average stress values show that the 5 nm sphere compressed at 0.01 K is

consistent with what was found by Zhang, et al. for all of the sphere sizes that they

 62

investigated. In particular, a sharp increase in the average stress is observed within the

0.4 to 0.6 strain range. However, the simulations at 300 K revealed a completely

different behavior with the contact stress remaining fairly constant around 5 GPa after

the initial yielding.

The contact stress was also calculated for all strains within the 10 nm sphere

(Figure 3.11). The maximum hardness associated with the compression of this sphere

at 300 K was roughly 15 GPa and was reached shortly after yield. This differs

drastically from the 25-34 GPa values previously reported as occurring around a strain

of 0.65.

Figure 3.11: Contact stress vs. strain for the [100] compressed 10 nm sphere at 300 K. The

maximum hardness is observed just after yield. Regions of distinct hardening/softening behavior

are seen to correspond to the material's response.

 63

The contact stress vs. strain plot (Figure 3.11) did reveal that the morphology of

the sphere influenced the measured hardness values. Initially, the contact stress

increases as the sphere behaves elastically. After yield, however, softening occurs as

the DC structure breaks down and gradually transforms into -Sn. No hardening is seen

to occur with the formation of -Sn. At a strain of about 0.4, the contact stress plateaus

indicating a region of consistent or slightly increasing hardness. During this period, the

core of the sphere has already transformed into -Sn resulting in a change in hardening

because the material being compressed is now -Sn as opposed to DC. Finally, at

strains around 0.6, the -Sn begins to yield and turn amorphous as well.

 What these results indicate is that hardening behavior can be associated with the

presence of a large volume of -Sn within the silicon nanospheres. However, this

hardening does not result in a large increase in the measured hardness during this range.

A simple linear extrapolation of the behavior from the 0.15-0.40 strain region showed

that if that softening trend continued, the hardness at 0.6 strain would be around 4 GPa

as opposed to the measured 8 GPa. While this is noteworthy, the difference is small

compared to the 20 GPa measured for the 5 nm sphere at 0.01 K for the same strain.

Once again, the large hardness values are associated with simulating at low T as

opposed to the presence of -Sn.

 Even though hardening is observed with the Tersoff potential, it fails to explain

the experimentally observed hardening and hardness values. Experimentally, hardening

and high hardness values are measured for strains as small as in the range of 0.1-0.2.

This cannot be explained as due to the presence of large regions of -Sn as even the

 64

compression direction most favorable to -Sn formation does not show the associated

hardening until 0.4 strain. Therefore, the experimental hardening must be due to some

other mechanism.

3.5 Dislocations

 In addition to the phase transformations, dislocation yielding was also observed

in three of the simulations: 5 nm 600 K [100] and [110] compressions and 20 nm 300 K

[100] compression.

 Distinguishing dislocations within the 5 nm 600 K simulations was difficult due

to the small number of atoms and the high thermal scatter. However, hints of

dislocation motion were observed by plotting the direction of the slip vectors of the

atoms. By restricting the plot to only showing atoms with slip vector magnitudes

around what is expected for perfect dislocations, small planar regions were seen to

contain parallel slip vectors. As the slip vector indicates the region where a dislocation

with a particular Burgers vector equal to the slip vector has passed through, finding a

planar region where all of the atoms have nearly identical slip vectors indicates that a

dislocation, however short lived, had existed there. Both of the [100] and [110]

compressions contained one of these dislocation hints, with the [100] shown in Figure

3.12. Since no dislocations were observed in the 5 and 10 nm spheres at 0.01 K and

300 K, a clear temperature dependence on dislocation nucleation is evident at this size

scale.

 65

Figure 3.12: Image of the slip vector direction for atoms with slip magnitudes close to a perfect

dislocation within the [100] compressed 5 nm diameter sphere at 600 K. The circle indicates a

planar region where the slip vectors are oriented nearly parallel to each other indicating the

presence of a dislocation.

 For the 20 nm diameter 300 K simulation, a total of 9 dislocations were

observed prior to unloading. The first of these dislocations is shown in Figure 3.13.

The presence of these dislocations indicates that there is a cutoff size for dislocation

formation between 10 and 20 nm diameters at 300 K. Close analysis of these

dislocations revealed them to be perfect 1/2 <110> shuffle set dislocations. They were

seen to form at high strains when there was already substantial regions that had

deformed to an intermediate state between the DC and -Sn phases. Slipped planes

indicating the motion of these dislocations appeared at the edge of the disordered

regions going to the surface of the sphere.

 66

Figure 3.13: Atoms colored with the slip vector magnitude for [100] compression of a 20nm

diameter sphere at 300 K. The blue (dark) regions of low slip (2-3 Å) has a volume type shape

representing phase change-type deformation resulting in regions of BCT5 and -Sn. The green

(light) region shows a plane that has slipped due to a full 1/2<110>{1-11} dislocation.

 The fact that dislocations can be observed in these MD simulations of silicon

nanospheres allows for a comparison with the hardening theory proposed in the

experimental papers. In short, this theory states that the high hardness values are the

result of the buildup of dislocations confined within the small particle dimensions. Due

to the presence of an oxide layer on the surface of the sphere, any dislocations that form

within the sphere are delayed from terminating on a free surface leading to dislocation

pileups. These pileups potentially result in a back stress opposing the applied load

resulting in high hardness values. As the particle size decreases, the volume that the

dislocations are confined within also decreases allowing for higher stresses to be

reached [49]. It is also believed that this behavior will have a lower limit when the

particle passes a critical size that is necessary for dislocations to form [7].

 67

 Only the 20 nm diameter sphere compressed at 300 K showed multiple

dislocations, confirming that there is a critical size for dislocation nucleation. However,

no accompanying hardening behavior occurred as the dislocations all formed

individually and quickly disappeared upon reaching the surface as no oxide barrier was

present. There was never more than one dislocation present within the sphere at any

timestep thus no dislocation interactions or pileups.

 Witnessing dislocation hardening and interactions using molecular dynamics

would require that multiple dislocations be present within the sphere at the same time.

To obtain this, dislocations must form more readily and/or must be impeded from

reaching and disappearing at the sphere's surface. The former could be possible by

changing the atomic potential used to one that is more prone to dislocation behavior,

while the latter can be accomplished by introducing a surface barrier representative of

the oxide layer. Also, increasing the sphere size would accomplish both of these

conditions as only the largest sphere showed dislocation behavior and further increases

in size would mean that any dislocations that formed would have to travel further to

reach the surface. Incorporating an oxide layer and increasing the sphere size would

make the simulations more comparable to the experimental results, but doing either

would require an increase in the complexity and computational time. Changing the

potential could result in an overall simulated behavior that is less realistic than what is

presented here, but if it is capable of showing multiple concurrent dislocations in sizes

comparable to those here, it would offer a simple and efficient way of studying the

dislocation interactions. Chapters 4 and 5 in this thesis investigate these possibilities.

 68

3.6 Conclusions

The yielding properties observed within Tersoff modeled silicon nanospheres

showed a high dependence on changes in temperature, orientation and sphere size. For

three temperatures and three orientations, -Sn is only seen to appear in substantial

amounts during [100] compression. Only the simulations near 0 K show high contact

stress values indicating that the chosen atomic potential fails to accurately model the

experimental large hardness values at ambient temperatures. The observed large

contact stress values near 0 K are attributed to a high yielding point, resulting in elastic

behavior at large strains and a stiffening behavior. As the -Sn transformation observed

in these simulations forms only for specific compression orientations and any hardening

associated with the -Sn phase is observed at high strains, it is highly unlikely for the -

Sn to play a role in the experimentally observed hardening.

Dislocation behavior is also identified and indicates that a critical size and

temperature must be exceeded for dislocations to nucleate. Although no hardening

results from the dislocations in these simulations, it is proposed that the larger

dimensions and the presence of an oxide on the experimentally observed particles

would result in a greater number of dislocations to be present within the particle

potentially allowing for dislocation hardening.

 69

Chapter Four: Dislocations with the Stillinger-Weber Potential

 This chapter continues the investigation of the yielding and hardening

mechanisms within silicon nanospheres. Here, the atomistic potential used is the

Stillinger-Weber potential resulting in completely different yielding mechanisms being

predominant. In particular, a considerable number of dislocations are observed

allowing for the analysis of how their interactions affect the measured hardness.

4.1 Plasticity Mechanisms

Compression along the [100] direction showed the formation and propagation of

numerous full 1/2<110> dislocations through the spheres. The dislocations were seen

to travel on a pair of shuffle set {111} planes connected by a {110} plane forming a "V"

shaped slipped region (Figure 4.1). This geometric shape was seen to result from the

dislocations nucleating on the {110} type planes oriented 45° from the applied loading,

then cross slipping to the more crystallographically favored {111} planes.

Each dislocation would homogeneously nucleate in the region just below the

contact area. These regions near the contact points experience stresses comparable to

the ideal strength of the material. After nucleating, the dislocations then proceed

diagonally through the sphere to the surface. Upon reaching the surface of the sphere,

the dislocations were able to terminate resulting in visible surface steps.

 70

Figure 4.1: Slip vector images from the 20nm diameter radius spheres compressed at 300 K. The

visible planes are ones that have slipped due to a dislocation that had traveled on that plane. The

dislocation loops were seen to have traveled on at least two {111} planes connected by {110} planes.

While dislocations were the primary yielding mechanism for the [100]

compression orientation they were not the only yielding mechanism observed as regions

of BCT5 were formed. The simulation of the 10 nm sphere compressed at 0.01 K

featured the most prevalent BCT5, which is shown in Figure 4.2. Atoms identified as

having bonding consistent with BCT5 were shown to form in two distinct shapes: a

conical structure and a highly directional region. The conical BCT5 region is seen to

form within the high stress regions near one of the contact areas and forms as a volume

as might be expected for a high pressure phase transformation. The conical region of

BCT5 remained throughout the compression and subsequent unloading. In contrast, the

directional region is composed of subsequent {110} planes that have been sheared.

This builds up a region consistent with BCT5 plane by plane. At higher stresses, full

dislocations nucleated from the edge of the directional BCT5 region and grew to the

surface. Further increases in the displacement resulted in that particular BCT5 region

disappearing. An in depth discussion of the formation of the BCT5 regions and how

 71

they relate to the dislocations nucleating on the {110} planes is addressed in Section

4.2.

Figure 4.2: Images showing the BCT5 yielding behavior seen at 0 K for compression along the [100]

direction within a 10 nm diameter sphere. Lines have been added showing the positions of the

indenters. The applied displacement increases from (a) to (d) with respective displacements of 2.06,

3.09, 3.86 and 4.39 nm. In (a), two distinct morphologies of BCT5 are seen: conical (top) and

directional (bottom). As the load increases, the conical region is seen to expand and move off center

while the directional region first grows and then disappears as it is replaced by full dislocations.

Compression along the [110] direction shows the formation of a wedge shaped

yield zone just within the sphere near both of the compression zones that appears to be a

complex region of partial dislocations, BCT5 and amorphous silicon. Continued

loading shows that partial dislocations nucleate and connect the wedge shaped regions

at the top and bottom that quickly transforms into a stacking fault (Figure 4.3). With

 72

further deformation, the stacking fault remains and grows slightly while the wedge-

shaped regions quickly decompose into purely amorphous zones.

Figure 4.3: A cross-section of a [110] compressed Stillinger-Weber sphere clearly showing a

stacking fault.

For the third direction tested, the [111] direction showed both dislocation and

stacking fault behavior. Initially, dislocations would form at the contact points and

grow into the material. But rather than travelling all the way to the sphere’s edge, the

dislocation line would transform into a stacking fault that connected to the surface that

the dislocation had originated from (Figure 4.4(a)). At higher displacements, full

dislocations would originate from this slipped region and proceed all the way to the

opposite side and outside of the sphere (Figure 4.4(b)).

 73

Figure 4.4: The dislocation behavior for [111] compression. (a) At low loads, a dislocation forms at

the contact region and grows into the crystal and transforms into a stacking fault connecting the

slipped region back to the amorphous contact area. (b) Higher loading results in the appearance of

full dislocations that travel to the opposite surface.

When compared to the previous results using the Tersoff potential in Chapter 3,

some major differences are observed. For 300 K simulations, dislocation behavior was

observed even in spheres as small as 5 nm with the Stillinger-Weber potential. In

contrast, the Tersoff results indicated a critical size for dislocation nucleation between

10 and 20 nm in diameter below which no dislocations form. In addition, no

dislocations were seen to nucleate at 0.01 K for the Tersoff potential, but they still

readily formed for the Stillinger-Weber potential. This shows that the Stillinger-Weber-

potential has the distinct advantage over the Tersoff potential for MD studies of

dislocations in silicon nanoparticles because smaller, less computationally expensive

spheres readily show dislocation yielding. Therefore, any reasonable MD investigation

of Si nanostructures that require large numbers of dislocations, such as studying

dislocation interactions, would be better accomplished with the Stillinger-Weber

potential.

 74

4.2 Dislocation Nucleation on {110} Planes

Nucleation of the observed full dislocations during the [100] sphere

compressions were seen to originate on {110} type planes. An examination of the

{110} planes just prior to dislocation nucleation revealed the formation of an

intermediate slip band. This slip band is visible as a plane of atoms in many of the

characterization methods by having a slip vector value between 1 and 3 Å, an angular

value around 0.13 and a coordination number of 5. Interestingly enough, these same

values correspond to the regions identified as BCT5. This suggested that the two

observed behaviors are not independent of each other and thus required a more in depth

look.

In order to examine the intermediate slip that occurs prior to the nucleation of

the full dislocations, a set of (0 1 1) planes from the 20 nm sphere compressed at 0.01 K

were identified as having a region that slipped with respect to each other and this region

was visually isolated from the bulk material. Images (Figure 4.5) were taken normal to

the atomic planes prior to the intermediate slip, after the slip, and finally after further

slip that resulted in the formation of the full dislocation at the edge of this region.

Comparing the first and last images to each other, it can be seen that the dislocation is

perfect and the slip occurred in the [011] direction. Analyzing the atomic positions

revealed that the resulting dislocation had the expected burgers vector of a/2[011]. As

for the intermediate step, it appears that the two planes are approximately halfway

between the two end positions giving a slip of roughly a/4[011]. Note that this slip does

not correspond to a crystallographically ideal stacking fault site.

 75

Figure 4.5: A region of two neighboring  110 planes extracted from the compressed sphere. (a)

This image shows the planes prior to any slip occurring with all atoms consistent with the DC

structure. (b) Increased loading resulted in this intermediate slip of approximately a/4[011]

between these two planes. This state remains stable for a number of imaged steps. (c) Slip

between the planes continues at higher loads resulting in the region returning to the DC structure.

As the two planes in this region have been displaced exactly a/2[011] from their initial positions in

(a), a perfect dislocation is formed at the edge of the region.

The fact that this intermediate state is stable for a number of timesteps suggests

that it corresponds to a local energy minimum. To better quantify this, a generalized

stacking fault (GSF) curve was calculated for slip between pairs of {110} planes and

compared to the GSF curve for shuffle set {111} slip. This was accomplished with MD

simulations in which incremental slip was applied between a pair of slip planes along

the slip direction. The systems were designed according to the work done by Godet, et

al. [70] such that the normal to the slip plane is oriented along the x-axis, periodic

conditions are applied in the y- and z-directions and the system size is chosen to be just

large enough to avoid issues with the periodicity and free surfaces. This resulted in

systems of 2048 atoms and 61.448 Å × 30.724 Å × 21.724 Å dimensions for the {110}

test and 1440 atoms and 47.0338 Å × 26.6064 Å × 23.0418 Å for the {111} test. The

energy was then calculated for all of the incremental slip positions by constraining the

atoms in the two slip planes only along the slip direction and performing a local

minimization.

 76

The resulting GSF curves (Figure 4.6(a)) calculated with the Stillinger-Weber

potential show a clear minimum at a displacement of a/4 < 011 > for {110} shearing.

Even more substantial is the fact that the slope and maximum seen with the {110} slip

are only slightly higher than what is observed with the {111} shuffle set slip. The

maximum values for the {111} and {110} slip measured are 0.051 and 0.058 eV/Å
2

respectively. The fact that the peak value of the {110} slip is comparable to the shuffle

set slip indicates that dislocation nucleation on {110} planes to be an alternative low

energy yielding path. This is indeed what is seen to occur during compressions along

the [100] direction as the resolved shear stress is greatest along {110} planes.

Figure 4.6: The generalized stacking fault curves for <110> slip in Si. (a) Using the Stillinger-

Weber potential, there is a clear energy minimum at the halfway point for slip on (110) planes

making the GSF energies comparable to slip on the (111) shuffle set planes. (b) Quantum

mechanical calculations using DFTB reveal that there is a slight minimum, but the large difference

between the maximum energies makes (111) shuffle set slip much more favorable.

This clearly shows that there exists a minimum. However, it does not explain

why the intermediate state should be energetically favorable. The answer is obtained by

a close examination of the atoms that shows that at least between the two planes, the

 77

atoms have a coordination number of 5 and the bond orientations are very similar in

appearance to those that appear in the BCT5 structure. As the potential energy

calculated for a given atom with the Stillinger-Weber potential is only dependent on its

nearest neighbors and BCT5 is a stable phase with this potential [17]. When the crystal

is sheared and the coordination of the atoms increases to 5, the atomic arrangement

rearranges to BCT5 bonding as the BCT5 structure is the favored 5 coordinated

structure. In terms of crystallography, it would be incorrect to call it a region of BCT5

as it only occurs on two neighboring atomic planes, but at least locally the bonding

around each atom in those two planes is the same as in the BCT5 regions.

From this, it can be proposed that the intermediate slip seen is a low energy

yielding mechanism for the Stillinger-Weber potential at low temperatures and can lead

to the formation of either BCT5 regions or the nucleation of dislocations. Once part of

a plane has undergone this intermediate slip, further loading can result in more yielding

to occur. If neighboring planes yield by this intermediate slip, then the region quickly

develops into a volume of BCT5. On the other hand, if the slip continues on the same

plane as the original slip, then the atoms will jump to the next perfect crystalline sites

forming a full dislocation on {110} planes. While the exact stress conditions in the

region of yield play the largest part in determining which behavior will occur, it is

reasonable that increasing the temperature will make the dislocations more favorable

than the BCT5 as there will be more energy to overcome the energy dip associated with

the intermediate slip and reach the true crystalline position.

It is interesting to note that slip on {110} planes was also reported for [100]

Stillinger-Weber Si nanowires in compression [57]. This indicates that the {110}

 78

dislocations are not limited to nanospheres and may occur in any structures where the

resolved shear on the {110} planes is larger than the resolved shear acting on {111}

planes. Interestingly, only shuffle-set dislocations were observed with the Stillinger-

Weber nanowires in tension. The {110} pathway may favor having a compressive

pressure in the high stressed regions.

To better investigate this novel dislocation nucleation pathway, similar GSF

curves were also calculated using quantum mechanical molecular dynamics. These

calculations were performed by Dong-Bo Zhang. These simulations used the DFTB

[90] method, as implemented in the computational package TROCADERO [91].

Different from most empirical many body potentials such as Stillinger-Weber type,

DFTB treats the electrons in an explicit way allowing for a more robust and realistic

representation. The DFTB calculations of the GSF curves were performed similarly to

the Stillinger-Weber results with the exception that fewer atoms were used: 16 for the

{111} plane and 32 for the {110} plane. This allowed for the smallest repeat units in

the y and z directions while allowing for 8 and 16 planes respectively parallel to the

imposed slip.

The GSF curves obtained with DFTB are shown in Figure 4.6(b). The behavior

of the {111} shuffle-set slip plane is consistent with what was previously reported for

this slip plane [92] with the exception being that the maximum measured here of 0.087

eV/Å
2
 is less than the previously reported maximum of 0.11 eV/Å

2
. This can be

accounted for in that here the energies were calculated by relaxing the atoms at the slip

planes in the two dimensions normal to the slip direction, whereas the original

calculations only relaxed normal to the slip plane. As for the {110} slip plane, a slight

 79

decrease in energy is observed at the halfway point along the slip direction. However,

the maximum energy associated with slip in the {110} plane is 0.13 eV/Å
2
, which is

considerably larger than the energy associated with the {111} shuffle-set. As the

quantum based simulations are more accurate, this suggests that the {110} nucleation is

less likely than the {111} one. However, the size of the barrier indicates that the {110}

nucleation is not prohibited to occur experimentally. Note also, that under large applied

external strain conditions, the energetic barriers might be significantly lower than the

value reported here.

4.3 Dislocation Yielding

All simulations presented here are for compressions of the sphere along the

[100] crystallographic direction. The [100] compression orientation was studied as it

was the orientation that was found to most readily show dislocations. It also offers a

unique opportunity where the Burgers vectors for all of the 1/2<110> dislocations are

45° from the compression direction. With this information, a simple geometric estimate

can be used to relate the total residual plastic displacement, p , to the number of

dislocations, n, with Burgers vector b

)cos( nbp  (4.1)

where  is the angle between b and the compression direction. This equation assumes

that all of the permanent deformation is due to dislocations and that each dislocation

travels far enough away from the contact area that its strain field does not affect the

measured displacement.

 80

For the 20 nm sphere compressed at a temperature of 0 K to a displacement of

7.3 nm we find a residual plastic deformation of 5.15 nm. This was measured by

comparing the position of the indenters when they first come into contact with the

sphere during loading to their positions when they lose contact during unloading. Using

Equation (1) with b = 0.384 nm and  = 45° predicts that there should be 19

dislocations that had acted within the sphere during compression. A thorough analysis

of the sphere at all imaged timesteps revealed that 24 dislocations had nucleated and

traversed through the sphere to one of the sphere's surfaces, while another 2-4

dislocations were still present within the spheres after unloading. As the actual number

of dislocations is greater than what is predicted, Equation 4.1 is too simple of a model

for use with the geometry of the system.

However, the concept that each dislocation results in a residual displacement of

roughly the same magnitude can be used to compare the results of the simulations to

that of experiments. Gerberich et al. [4] noted that the experimental load vs.

displacement plots of a 38.6 nm diameter sphere featured numerous displacement

excursions with approximately the same magnitudes believed to be due to dislocation

activity (Figure 4.7(a)). The total residual displacement after the first loading was seen

to be close to the sum of the excursions indicating the dislocation behavior to be the

primary yielding mechanism. In Figure 4.7(a) there are four clear displacement

excursions and the resulting plasticity is roughly 0.9 nm. From this, each dislocation

contributes an average of 0.225 nm to the total plastic displacement. In comparison, the

simulation residual displacement of 5.15 nm and 24 dislocations results in a

 81

displacement per dislocation of 0.215 nm. This shows a good agreement between the

two.

It had been proposed by Gerberich, et al. [4] that the dislocations were forming

as concentric loops entering into the material (Figure 4.7(b)). Given the agreement

between the average displacement per dislocation seen in the simulations and

experiments, it seems more likely that the dislocations would form and move in a

fashion similar to what is seen in the simulations. Therefore, a better model would be

of the dislocations nucleating at the contact areas on slip planes with large shear stresses

and travelling out toward the far away surfaces of the sphere (Figure 4.7(c)). It should

be noted that this in no way changes the results of the experimental paper [4]. In fact,

the results of the simulations presented here are consistent with the claim that the

primary yielding mechanism is dislocation nucleation and motion.

Figure 4.7: (a) The load vs. displacement curve for an experimentally compressed silicon

nanoparticle showing clear excursion events (from [4]). (b) The initial model from [4] that was

based upon prismatic punching of dislocation loops into the sphere. (c) This revised schematic is

based on the simulation results that uses dislocation loops which nucleate at the contact area and

travel at an angle through the sphere.

 82

4.4 Hardening Behavior

The load vs. displacement curves from the simulations showed numerous drops

in the applied load. Slip vector mapping of the atoms revealed that every major drop

corresponded with dislocation activity (e.g. Figure 4.8). Interestingly not every

dislocation event corresponded to a load drop as many of the smaller events only

resulted in bumps or slope changes in the curve. Given that the simulations are

displacement controlled and the experiments are load controlled, these drops in load are

consistent with the experimentally observed displacement excursions.

Figure 4.8: Evolution of dislocation behavior seen at moderate displacements of the 10 nm [100]

compressed sphere at 300K. Images use the slip vector parameter to highlight atoms showing the

path that a dislocation has traveled.

The averaged contact stress (P/πa
2
) was also calculated for all of the samples

with a being the radius of the contact area calculated using a formula given by Vergeles

 83

et al. [89]. The contact stress vs. strain and the load vs. strain for the 20 nm sphere

compressed at 0.01 K is shown in Figure 4.9(a). At low strains a series of peaks would

appear in the contact stress values corresponding to jumps in the contact area due to

surface steps on the sphere. The measured load is seen to smoothly increase during this

period indicating that the material is still elastic.

Around a strain of 0.10, the stress reaches a maximum at the yield point and

then shows softening of the stress as the strain continues to increases. This softening

occurs as the dislocations reach the free surface and disappear. Thus hardening is

impeded, as the dislocations are unable to accumulate and increase in number with

increasing strain. However, for a short period of time just after the initial yielding event,

this is not the case in the larger spheres.

For the 20 nm sphere at both 0 K and 300 K, the stress generally plateaus

(Figures 4.9(a),4.10). During this period, the number of dislocations nucleating is

greater than the number reaching the surface allowing for a short period of nearly

constant hardness as the number of dislocations within the sphere increases up to a

maximum of 5 (Figure 4.9). During this same strain range for the 34 nm sphere, the

hardness is seen to greatly increase for a short period of time after the initial burst of

eight dislocations (Figure 4.10).

 84

Figure 4.9: (a) The contact stress vs. displacement and the load vs. displacement curves for the 20

nm diameter sphere compressed along the [100] direction. The dashed vertical line marks the onset

of yield. Solid vertical lines mark regions during the subsequent plateau behavior where the

number of dislocations remains the same. (b) An image of the slipped planes within the sphere near

the end of this plateau behavior.

11

12

13

14

15

16

17

18

0.1 0.12 0.14 0.16 0.18

C
o

n
ta

c
t

S
tr

e
s

s
,
P
/
a
2

(G
P

a
)

Strain, /2R

20 nm 0K

20 nm 300K

34 nm 300K

Figure 4.10: A close-up view of the stress vs. strain curves for the 20 and 34 nm compressed spheres

near the first yielding. The arrows point out the first instances of plastic yielding. Note that the

stress plateaus for the 20 nm data and steadily increases for the 34 nm data after the initial yield.

 85

A method was developed to try to quantitatively compare this short-lived

hardening response in the simulations to the actual hardening response from

experiments. In a paper under preparation, nanospheres in the range of 40-400 nm in

diameter will be shown to possess high strain hardening capacity under compression

[88]. One of the spheres analyzed, 38.6 nm in diameter, also contained atoms on the

order of 10
6
 being comparable to the 34 nm diameter computer simulation. As

described elsewhere [47], this sphere was repeatedly loaded and unloaded with a

Triboscope mounted on an atomic force microscope for accurately monitoring the

permanent plastic deformation before each run.

To investigate the hardening capacity, the experimental load and displacement

curves for the 2nd, 5th, 7th, 9th, 12th and 15th compressions of the 38.6 nm particle

were converted into stress and strain in a fashion similar to what was done with the

simulations. The only complication being that the contact area cannot be directly

measured for the experimental spheres. To overcome this, the Geometric contact area

model [7] was used to approximate the contact area.

4

2
2 T

Tg Ra


  (4.2)

Here R is the original radius of the sphere, T is the total displacement given by

 hRT  2 , where h is the height of the sphere before each compression. This model

was chosen due to its simple form and because it has been previously used in

conjunction with experimental results [7, 47]. Whatever the combination of elastic and

plastic strain, this Geometric relationship represents the total contact area assuming that

 86

there is not a large barreling of the sphere. As the strains are relatively small, this is a

reasonable assumption.

Plotting the stress vs. strain data for both the experiments and simulations on a

log-log plot (shown in Figure 4.11) revealed that they all featured power law regions

that started around 10% strain. A least squares fit was done on these regions to

calculate a hardening exponent. While this method may not produce a true hardening

exponent as contact stresses were used rather than mean stresses, it nevertheless allows

for a quantifiable method of comparison.

For the 38.6 nm data, the 2nd, 5th, 7th, 9th, 12th and 15th compressions resulted

in hardening exponents of 0.17, 0.77, 0.81, 1.17, 2.25 and 1.99 respectively. This

indicates a trend in which the hardening behavior becomes more pronounced as the

sample is repeatedly loaded suggesting that plastic damage is rapidly accumulating.

In comparison, if the same fitting was made for the whole plastic region of the

simulations, the hardening exponents found range from -0.3 to -0.6 indicating extensive

softening. As previously mentioned, this softening most likely results in the

dislocations that form not being constrained within the spheres. Thus to compare the

hardening of the simulations with the experimental work, it makes sense to only

examine the hardening behavior in the region just after the initial yielding where

dislocations are present within the sphere but haven't had the chance to escape to the

sphere's surface. By looking at these regions only, hardening exponents for the 0.01 K

and 300 K compressions of the 20 nm sphere are found to be 0.18 and 0.04 respectively

while the 34 nm simulation shows a hardening exponent of 0.64.

 87

10

100

0.1 1

lo
g(

C
o

n
ta

ct
 S

tr
e

ss
) (

G
Pa

)

log(Strain)

38.6nm run #2 [Mook 2007]

38.6nm run #7 [Mook 2007]

38.6nm run #15 [Mook 2007]

MD 20nm 0K

MD 20nm 300K

MD 34nm 300K

n = 0.81

n = 0.04

n = 0.17

n = 0.64

n = 0.18

n =1.99

Figure 4.11: The strain hardening curves obtained from the simulations and three of the 38.6 nm

compression runs.

Since the simulated spheres are only loaded once, it would be expected that the

measured hardening exponents should be consistent with the earliest compressions of

the experimental particle. For the 20 nm sphere, this is indeed the case with the 0.01 K

run having a hardening exponent comparable to the second experimental loading.

There is, however, a discrepancy between the magnitude of the contact stress values

measured as even the second experimental loading shows values greater than all of the

simulations.

The exponent for the 34 nm run is larger and more consistent with the 7th

experimental loading of the 38.6 nm sphere, i.e. n=0.64 and 0.81 respectively. The

higher hardening exponent measured for the 34 nm sphere could be attributed to a

number of different reasons. First, since more dislocations are observed to be present

 88

within this sphere after the initial yield, the back stresses associated with those

dislocations cause a sharper increase in the measured hardness. Since the simulations

used here were selected to show the most dislocations they may show more dislocations

than what occurs experimentally resulting in a larger hardening exponent.

Another possibility is that the large hardening exponent observed in simulations

could result from partially elastic behavior. The first instance of yield in this sphere is

the formation of 8 dislocations within a short time period. This initial burst of

dislocations may act as a single yield event after which the sphere may respond

elastically for a short period until another event occurs. However, the slope of this

region dσ/dε is about 70 GPa, which is less than half the elastic modulus of silicon

indicating that it is not entirely elastic. This could be clarified with simulations by

obtaining more data from more runs or being able to measure the post-yield behavior

for a longer period without the dislocations reaching the free surface and disappearing.

4.5 Conclusions

Molecular dynamics simulations using the Stillinger-Weber potential of

compressed silicon nanospheres reveal extensive dislocation and dislocation related

yielding behaviors. Depending on the orientation, dislocations are seen to nucleate near

the contact points and grow on both {110} and {111} type planes. In addition, stacking

faults and regions of BCT5 are also seen to occur. The extensive presence of the

dislocations within the sphere sizes simulated here show that the Stillinger-Weber

potential offers the opportunity to efficiently study dislocations in nanostructures of

silicon with MD.

 89

The unexpected presence of dislocations on {110} planes is investigated. By

estimating the energy barrier for dislocation nucleation with generalized stacking fault

calculations, it was shown that for the Stillinger-Weber potential, the barrier on {110}

planes is comparable to the barrier on {111} shuffle-set planes. The low energy of the

{110} slip was attributed to the presence of a metastable state along the slip pathway in

which the atoms form BCT5-like bonding. A comparative study using DFTB

simulations showed the barrier of the {110} slip to be considerably larger than that of

the shuffle-set.

Molecular dynamics simulations of silicon nanosphere deformation are

presented. These make a clear case that dislocation formation and interaction are the

primary mechanisms behind the measured behaviors of silicon nanospheres under

confined compression. The simulations show a direct correspondence between

dislocation nucleation and drops in the measured load. This confirms that the

displacement discursions that are observed experimentally for these compressions of

small spheres are most likely due to dislocations.

The measured contact stress of the simulated spheres is also seen to increase

with strain during periods where the number of dislocations present is increasing. A

hardening exponent was measured during this region, for which the 20 nm spheres

showed hardening consistent with experimental results. However the 34 nm sphere

indicated a much larger hardening exponent than what is consistent with experiments

for spheres that had been compressed only once. This high hardening could either be

due to more dislocations present within the sphere than what occurs experimentally, or

from the multiple dislocations acting together as discrete yielding events. All of the

 90

results show that the presence of the dislocations within the spheres corresponds to a

region of increasing hardness similar to or greater than what is seen experimentally.

This indicates that the experimentally observed hardening at low strains is consistent

with dislocations forming within the nanoparticles.

 91

Chapter Five: Dislocation interactions

 The focus of this chapter is a bit different than the previous two. The previous

chapters focused on using molecular dynamics to compare simulated behaviors to

experimental results from similar conditions. In contrast, this chapter compares results

from simulations to theoretical models involving dislocation interactions. The purpose

of this study is to obtain a better understanding of the dislocation interactions and

determine if simulations can be designed to appropriately investigate those interactions.

 In order to study the dislocation interactions, various external constraints were

imposed upon simple simulation systems. It was observed that the constraints greatly

influenced the nature of the dislocations within these simulations allowing for a number

of different interactions to be studied. Specifically, the direct influence of the

constraints on the dislocations were observed, along with dislocation-dislocation

interactions and dislocation-interface interactions. The interaction between dislocations

and free surfaces are compared to how the dislocations respond to the presence of an

oxide layer.

5.1 Si-SiO2 Potentials

Prior to any investigations of how dislocations within silicon interact with an

oxide layer, an appropriate potential has to be found that can adequately handle the

bonding and behavior of the pure silicon, the oxide and the interface between the two.

Two such Si-SiO2 potentials were investigated here: the potentials of Jiang and Brown

 92

[72, 73] and Watanabe, Fujiwara, Noguchi, Hoshino and Ohdomari [76, 77]. These two

potentials are similar in that they both modify the Stillinger-Weber potential to allow

for oxygen atoms to be properly introduced into the system.

 In order to study these potentials, they both had to be implemented into the code

of the LAMMPS molecular dynamics program [83]. The files developed for the

implementation of these potentials are included in Appendix Two. As the potentials

were being implemented, various simple test runs were performed to compare the

results with what was previously reported with the potentials to insure that the

potentials were working properly. During this preliminary testing, it was determined

that the Watanabe potential could adequately simulate an oxide layer on a silicon

crystal, while the Jiang and Brown potential was inadequate for this.

 The Jiang and Brown potential was originally created to simulate the addition of

oxygen impurities into bulk silicon. As such, the results of the simulations from the

first papers using this potential reported values related to this impurity [72, 73]. In

particular, the resulting dilation of the crystal and enthalpy of formation, ΔHf, related to

the addition of a sole oxygen atom were reported, along with the equilibrium Si-O bond

length.

 During the preliminary testing of the Jiang and Brown implementation in

LAMMPS, a discrepancy was observed. To handle the oxide, the Jiang and Brown

potential mixes the Stillinger-Weber silicon potential with the BKS SiO2 potential.

Present within the BKS pair term is an expression for the Coulombic interaction of Si

and O ions

 93

ij

jiIonic

BKS
r

qCq
 (5.1)

where qi and qj are the ionic charges related to ions i and j and C is Coulomb's constant.

In order to obtain similar values with the potential for the dilation, ΔHf, and Si-O bond

length, Coulomb's constant needed to be neglected. The values associated with these

three values found here by including and not including C are plotted in Figure 5.1 along

with the reported values.

D
ila

ti
o
n


H

fo
rm

a
ti
o

n
(e

V
)

O
-S

i b
o
n
d
 (

A
)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Dilation

0

1

2

3

4

5

Hformation (eV)Hformation (eV)
1.55

1.6

1.65

1.7

1.75

1.8

O-Si bond (A)

No C

With C

reported
1.55

1.6

1.65

1.7

1.75

1.8

O-Si bond (A)

No C

With C

reported

Figure 5.1: Various values obtained with the Jiang and Brown potential reveal that Coulomb's

constant, C, must be neglected in order to match with the reported values [72, 73].

 Leaving out the Coulomb's constant did allow for these properties to be decently

matched with the reported values, but it had drastic effects on the modeling of bulk

regions of SiO2. A standard of an ideal crystal of -quartz was used to compare the

oxide found by the BKS potential [74, 75] with the oxide calculated with the Jiang and

Brown potential. Computing the radial distribution function related to the first peak

revealed that Coulomb's constant must be included in the Jiang and Brown potential in

order to properly model the bonds within the oxide (Figure 5.2). The simulations to

obtain the RDF curve also revealed that the oxide became unstable after a period of

time with the Jiang and Brown potential regardless of the inclusion of the Coulomb's

 94

constant. This clearly indicates that the Jiang and Brown potential is inadequate for

modeling a layer of oxide on a crystal of silicon.

0

2

4

6

8

10

12

1.4 1.6 1.8 2

r (A)

Radial Distribution Function

No C

With C

BKS

Figure 5.2: The radial distribution function for the first peak of -quartz using the Jiang and

Brown potential. A Comparison with the BKS oxide potential is shown indicating that Coulomb's

constant should be included to properly model the oxide.

 Similar preliminary tests with the Watanabe potential revealed values consistent

with those reported. As the Watanabe potential is a modification of the Stillinger-

Weber potential, it is expected that regions of oxide free silicon should behave

identically in both the Watanabe and the Stillinger-Weber potential given that the same

parameters are used for the Si-Si interaction. A test simulation of a bulk crystal of

silicon revealed that the Watanabe potential did produce the same results as the

Stillinger-Weber potential, albeit a slightly longer computation time. Further tests

investigating the Si-O bond length for a two atom system and within -quartz, and the

potential energy of formation for the -quartz crystal matched with what was reported.

 95

 The Watanabe potential has been previously used to study Si-SiO2 systems

showing that both phases and the interface between the two are stable [76, 77, 81, 82].

Also, the behavior of the pure silicon is identical to that given by the Stillinger-Weber

potential making the nature of the dislocations consistent between the oxide containing

systems and the oxide free systems. Finally, the earlier works have shown that the

oxide can be successfully grown using the routine of Dalla Torre, et al. [82] that is

described in Chapter 2. Because of all of this, the Watanabe potential was chosen for

the study of the dislocation interactions with the oxide layer.

5.2 System Design

 While the system design is explained in depth in Chapter 2, a quick description

is presented here due to it being distinctly different than the spherical particles explored

in Chapters 3 and 4, and the fact that the results depend heavily upon the specific

conditions implemented. The systems studied here consisted of rectangular blocks of

atoms in initially perfect diamond cubic silicon positions. While a variety of simulation

sizes were explored, they all were designed to be similar. All the simulations had

periodic conditions in the z direction with box dimension in that direction of 26.606 Å.

The x and y directions were held proportional to 85.846 Å by 94.068 Å, with simulation

sizes used that were 2X, 3X, 4X and 5X times this in both of these directions. Each

simulation contained two perfect edge dislocations created by removing planes of

atoms. These dislocations were initially positioned at 1/2 the x dimension and at 1/4

and 3/4 the y dimension.

 96

 The results presented here are divided up based upon the boundary conditions in

the x direction. This was done as the results and what interactions that could be studied

depended highly upon the boundary conditions. The three types of boundary conditions

investigated were periodic x boundaries, free surfaces consisting of non-periodic, non-

constrained surfaces, and oxide surfaces created by adding in a region of oxide. The

periodic boundaries allowed for the study of how the dislocations interacted with each

other and with strains imposed upon the simulation box. Incorporating the free surface

or oxide surface allowed for a comparison of how the dislocations interacted between

the two simulated surfaces.

 In addition to investigating different boundary conditions in the x direction, the

conditions imposed upon the y boundaries also influenced the results. Two conditions

were used in particular: constraining the atoms near the surface to be held in place, and

leaving the boundary atoms unconstrained resulting in a free surface. Constraining the

atoms at the y-boundaries fixes the strain within the system. This affects the movement

of the dislocations because a moving dislocation results in a small displacement

between two planes of atoms which in turn causes a strain within the system. In

contrast, leaving the y-boundaries free allows for the dislocations to respond to the local

internal interactions.

5.3 Periodic Boundary Conditions

 Periodic boundary conditions in the x direction offer the simplest situation for

studying. The only interactions that are present are interactions between the

dislocations, the strain within the whole system and possibly some image forces from

 97

the surfaces in the y direction. How the y boundaries are treated affects which of the

interactions is dominant. With unconstrained y-boundaries the two dislocations move

away from each other due to the interaction between the two dislocations. According to

elementary dislocation theory, the interaction force between these two parallel edge

dislocations is repulsive when the separation distance between the two dislocations in

the x direction is less than their separation in the y direction, and attractive when the x

separation is greater than the y separation [93]. So for an isotropic material, if only two

dislocations are interacting, they would reach an equilibrium point when their x and y

separations are equivalent.

 For these simulations, in addition to the system not being isotropic, the periodic

condition effectively makes it so that there are not just two dislocations interacting but

two infinite arrays of equally spaced dislocations. This results in the equilibrium

position of the dislocations occurring when the dislocations are separated along the x

direction by approximately half the periodic distance. At this position, each dislocation

is equidistant from two occurrences of the other dislocation. An example for the 4X

simulation is that the y separation is 186 Å, but the x separation fluctuates around 152

Å, which corresponds to half of the box distance in the x direction.

 Constraining the atoms at the y boundaries results in a different dislocation

response. By holding the y boundaries in place, the total strain of the system is held at

zero. This restricts the movement of the dislocations by making it unfavorable for the

dislocations to separate. In the end, the dislocations are seen to move apart slightly due

to their repulsion, but not by much due to the system strain restriction. For that same 4X

simulation mentioned before, the x separation of the dislocation only averages around

 98

8.5 Å as opposed to the 152 Å seen with the unconstrained conditions. The separation

distance is plotted vs. the simulation run time in Figure 5.3.

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100

D
is

ta
n

ce
 B

e
tw

e
e

n
 D

is
lo

ca
ti

o
n

s
(A

)

Time (ps)

Periodic BC with No Applied Strain

Constrained at zero strain

Unconstrained

Figure 5.3: The separation distance between the two dislocations in the 4X periodic simulation.

When unconstrained, the dislocations repulse each other and separate by exactly half the periodic

distance. Constraining the system to a zero strain state prevents the dislocations from separating.

 The effect of the constrained boundary on the dislocation behavior can be

calculated from geometrical considerations. Within the periodic simulations, each

complete cycle of a dislocation back to its original position would displace the areas

above and below the dislocation by exactly one Burgers vector, b. So, one dislocation

traveling one full cycle (a distance of lohi xxx ) corresponds to a total geometric

shear displacement,  , of b. The resulting displacement due to one dislocation moving

an arbitrary amount is therefore given by

 99

   

x

xtx
bx







 0

 (5.2)

where  0x is the initial x coordinate of the dislocation and  tx is the x coordinate at

time t. All of the systems studied here have two dislocations of opposite signs that

initially have the same x coordinate. This results in the total displacement caused by

both dislocations to be given by

           

x

txtx
b

x

xtx
b

x

xtx
bxx


















21221121 00
 (5.3)

The displacement due to the dislocations is related to the distance that they move apart

from each other. In addition to the motion of the dislocations, displacements can also

be imposed upon the system by moving the constrained y boundaries in the x direction.

Either of these displacements result in a shear strain within the system given by

 
yx

xxb

y

xx
xy














21

applied

y


 (5.4)

This in turn results in a force acting upon the dislocations from the strain within the

system as

 
yx

xxbb
bF x

xyx










21

2applied

box

y


 (5.5)

 Within these constrained systems, this force acts upon the dislocations by

attempting to relieve the shear strain. Neglecting all other forces acting on the

dislocations shows that for an applied displacement of the box the equilibrium

separation is

 

b

x
xx x

applied

21


 

 (5.6)

 100

If the constrained atoms are moved at a constant rate, then the average of the dislocation

velocities would have to reach a steady state in order to compensate for it. The average

steady state velocity is

 b

x
v

2


 (5.7)

where  is the displacement rate dtd . Keep in mind that the dislocations are

traveling in opposite directions as they have opposite signs.

 Measuring the velocities of the dislocations within periodic systems subjected to

a constant displacement rate reveals that this model is accurate. Plots of the dislocation

positions vs. time revealed that the dislocations moved at nearly constant rates after

strain was applied. This allowed for velocities to be measured using a linear least

squares fit to the post strain region. The velocities were measured within all of the sizes

investigated and at a variety of displacement rates. It was found that at the slower

velocities, the measured velocities are consistent with and only slightly less than the

predicted steady state values of Equation 5.7. This slight difference is most likely due

to the time scale of the simulations having not quite reached the steady state. This also

explains why the larger simulation sizes show slightly lower velocities than the smaller

simulations at similar predicted velocities as the larger simulations would take longer to

reach the steady state. At the faster displacement rates, a deviation is seen where the

measured velocities appear to reach an upper limit around 29 Å/ps. This limit would be

roughly 2900 m/s, which is on the order of the sound velocity of silicon (the

longitudinal and shear velocities along the [100] direction are approximately 8500 and

5000 m/s respectively with the Stillinger-Weber potential).

 101

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45

P
re

d
ic

te
d

 V
e

lo
ci

ti
e

s

Measured Velocities

Average Dislocation Velocities (A/ps)

2x

3x

4x

5x

Figure 5.4: The average measured velocities of the dislocations plotted vs. the predicted steady

state velocities (Equation 5.7) for different simulation sizes. An excellent agreement is seen between

the measured and predicted velocities at the low strain rates. At the higher rates, the dislocations

reach a maximum velocity around 29 Å/ps.

5.4 Free Surface Boundaries

5.4.1 Attraction to the Free Surface

 Introducing free surfaces into the system adds additional interactions to the

dislocations. Dislocations are attracted to a free surface due to the modification in the

stress field that is necessary due to the constraints associated with the free surface. This

results in what is referred to as an "image force", where the attraction is modeled as the

presence of a dislocation of opposite sign equidistant from the free surface being placed

in the "void" [93]. For an edge dislocation in an isotropic material, this results in a

force of

 d
b

FX







14

2
Im

 (5.8)

 102

where d is the distance that the dislocation is from the free surface. Using Newton's

Law

 d
b

amFX





 

14

2
Im (5.9)

If the mass associated with the dislocation is constant, then it can be easily seen that

 1 da (5.10)

 With free y boundaries, only repulsion between the two actual dislocations and

attraction to the free surfaces is expected and observed. The dislocations first fluctuate

about their initial positions near the center of the system approximately equidistant from

the two free x surfaces. This only lasts for a short period before the dislocations start

increasing in velocity as they move toward opposite free surfaces. The velocity of the

dislocations is observed to continue increasing until they reach the surface and form an

atomic surface step.

 A simple model was used to numerically integrate the position and velocity of

the dislocation as a function of time using the Velocity Verlet routine [64]. Using the

interaction acceleration of 1 da
 and ignoring the dislocation-dislocation

interactions, the only necessary parameters are a starting position and velocity of the

dislocations and the scaling constant for the interaction. Figure 5.5 shows the positions

of the dislocations as they approach the free surfaces and the corresponding simple

model described. It can be seen that the model does describe the general behavior of

the dislocation's positions. The model is not perfect because it neglects the dislocation-

dislocation interaction and does not account for the thermal fluctuations inherent in

these simulations.

 103

0

20

40

60

80

100

120

140

160

-50 -40 -30 -20 -10 0

D
is

ta
n

ce
 to

 s
u

rf
ac

e
 (A

)

Time until dislocation reaches free surface (ps)

4X Free surface with no applied strain

Model fit with
C = 250

Figure 5.5: The position of the dislocations with respect to the free surface for the unconstrained

4X simulation. The acceleration of the dislocations is consistent with the model based upon a 1/d

attraction.

Obtaining the fitting constant for the interactions by visually matching the

model to the measured positions indicates that it might depend on the size of the

simulation. For instance, the acceleration constants found for the 2X, 3X, and 4X

simulations were 350, 300 and 250 (Å/ps)
2
 respectively. This slight size dependence

could be due to the neglected dislocation-dislocation interactions which would be

greater for the smaller simulations as the dislocations are closer to each other and

therefore causing a greater repulsion towards the free surfaces.

 With constrained and moving boundaries, the interaction with the free surface

can be overpowered by the interaction resulting in behaviors that are a combination of

the interactions between the dislocations, with the free surfaces and with the system

strain. Having the free surfaces constrained but not moving, the two dislocations

 104

eventually reach the same free surface. In the 2X and 3X systems, the two dislocations

stay close to each other and move towards the same free surface. In contrast, a more

complex response is seen for the 4X and 5X runs. Initially, the dislocations repulse

each other just like with the periodic boundaries. After separating, the dislocations

were then closer to the free surfaces resulting in one of the two dislocations being

pulled to a free surface and forming a surface step. Immediately after, the other

dislocation then moved away from the free surface that it was closest to and eventually

reached the same surface that the first dislocation had disappeared on. This reversal of

the second dislocation's movement occurs as the system strain due to the two

dislocations separating still remains in the system, but the dislocation-dislocation

repulsion is gone as there is now only one dislocation. The system strain overpowers

the attraction of the closer free surface and moves the dislocation to the free surface that

the other dislocation had disappeared at. Figure 5.6 illustrates this response.

Constant strain rate simulations with the free surface initially show dislocation

positions and velocities similar to what was seen during the comparable periodic

simulations. However, after a short time, the velocities of the dislocations increase

indicating an attraction towards the free surfaces.

 105

Figure 5.6: The dislocation response seen for the 4X simulation with free x surfaces and y surfaces

constrained at zero shear strain. The atoms are colored according to their potential energy. The

positions of the dislocations are highlighted with white circles for clarity. (a) Initial positions of the

dislocations. (b) The dislocations repulse each other. (c) The top dislocation is attracted to a free

surface. (d) The bottom dislocation reverses direction and goes to the farther free surface because

of the strain within the system.

5.4.2 Temperature Variations

 The free surface simulations were also used to study the motion of the

dislocations at various temperatures. As the attraction of the dislocations to the free

surfaces is the dominant force and has a consistent behavior, it was used as a standard

for investigating the dislocation motion. The free surface attraction also had the benefit

of developing naturally without any artificial constraints placed upon the system box.

 106

 Using the 2X simulation size, the motions of the dislocations in an

unconstrained system were observed for temperatures between 0.01 K and 300 K. The

motion of the dislocations towards the free surface was practically indistinguishable for

all of the simulations that were run between 10 and 300 K. Below 10 K, the

dislocations are observed to no longer smoothly approach the surface, but instead show

a stepwise behavior where they remain at one spot for a short period of time before

jumping slightly closer to the free surface (Figure 5.7). Progressively lower

temperatures show this effect to become more pronounced and the total time for the

dislocations to reach the surface increases. At 0.01 K, the dislocations only slightly

move from their initial positions and remain fixed for the remainder of the simulation

never reaching the surface.

0

10

20

30

40

50

60

70

80

-18 -16 -14 -12 -10 -8 -6 -4 -2 0

D
is

ta
n

ce
 to

 f
re

e
su

rf
ac

e
(A

)

Time before dislocation reaches surface (ps)

Positon of same dislocation at different temperatures

0.5 K

1 K
10 K

5 K

Figure 5.7: The position of one dislocation as it is attracted to a free surface at various low

temperatures. As the temperature decreases, the time it takes for the dislocation to reach the

surface increases and a stepwise motion becomes evident.

 107

 The variation in the dislocation motion with temperature can be explained with

the Peierls energy barrier. As the dislocations move through the crystal, there are

certain positions that are lower in energy due to the resulting atomic configurations.

The dislocations jump from one low energy position to the next when they have enough

energy to overcome the barrier associated with crossing the higher energy positions.

Here, the dislocations are moving along the [110] direction. The average distance

measured between the jumps is close to the (440) planar separation within DC silicon of

0.96 Å.

 The energy needed to overcome the barrier has to either come from the forces

acting on the dislocations or from the thermal energy of the system. For the low

temperature simulations, the force acting upon the dislocations is not large enough to

overcome the Peierls barrier when the dislocations are near their initial positions. Thus,

the dislocations require thermal energy from the system in order to move. As the

temperature decreases, it becomes less likely for the atoms making up the dislocation

core to have enough kinetic energy to allow the dislocation to change positions, so the

dislocations remain at the low energy positions for a longer time.

 Also, as a dislocation gets closer to a free surface, the attractive force acting on

the dislocation increases making it more likely for it to move resulting in shorter times

before the next jump in position. Eventually, the attractive force gets strong enough

that the low temperature no longer matters and the dislocation begins to move in a

smoother fashion.

 This technique, or a similar one, could conceivably be used to work out the

activation energy associated with the Peierls barrier and how it depends both on

 108

temperature and the forces acting on the dislocation. However, a much more robust

model of the dislocation attraction is needed. While the acceleration due to the

attraction was shown to be consistent with the models, the actual expression for the

force was not identified as the effective mass of the dislocations is unknown and the

models used were based upon an isotropic medium. Working out an exact expression

for the attraction would require either a more accurate model based upon anisotropic

elasticity, or a method of identifying the dislocation’s effective mass through a

comprehensive simulation study. Either of these seem possible for continuing this

work.

5.5 Oxide Interaction

 Three different system configurations were investigated for studying the

interaction of the dislocations with the oxide interface. All of these systems were

created by attaching atomic blocks containing an oxide onto the dislocation containing

systems used during the periodic and free surface simulations. The growth of the oxide

containing blocks is outlined in Chapter 2. The first system configuration featured an

oxide layer added to one of the x surfaces by matching up the atoms at the x interface

that were fixed at perfect DC positions with the fixed atoms at the base of the block

upon which the oxide was grown. This allowed for the oxide to be introduced to the

new system without placing any atoms in high energy configurations, but resulted in the

distance between the dislocations and the oxide interface being greater than the distance

between the dislocations and the free surface at the opposite x surface. The second

configuration was created in a similar manner, but an oxide was added to both x

 109

surfaces. Finally, the third system that was investigated featured oxide interfaces that

were placed at positions comparable to the positions of the surfaces in the free surface

systems. However, this required the two base systems to be merged between atoms

that were already relaxed from ideal positions creating a temporary higher energy

region.

 Assuming isotropic behavior and a smooth interface, the interaction between a

dislocation and an interface with a different material can also be calculated with image

forces. In this case, the dislocation would still feel a force as if there was an imaginary

dislocation equidistant on the other side of the interface. However, now the Burgers

vector associated with that imaginary dislocation, *b , is related to the shear moduli of

the two materials that form the interface [93]










*

*
* bb (5.11)

where  is the shear modulus of the material containing the actual dislocation and * is

the shear modulus of the material on the other side of the interface. Using this, we find

that the force on the actual dislocation is

 

Im

*

**

14
x

Int

X F
d

bb
F















 (5.12)

Using some generic values related to silicon and fused silica, this interaction is

estimated to be roughly 1/4 to 1/3 of the interaction with the free surface. This predicts

that the interaction should have a similar 1/d dependence as the free surface, but that the

strength of the oxide interaction is smaller.

 110

5.5.1 One Oxide Interface

 For the simulations with one oxide interface and one free surface, it is difficult

to work out the oxide interaction within these simulations as it is never the dominant

interaction. Initially, the attraction to the free surface is dominant as noted by the

dislocations moving towards it. This is to be expected as the attraction to the free

surface is predicted to be stronger than the attraction to the oxide interface and the

dislocations are initially closer to the free surface than the oxide interface. If no shear

strain is applied, or if the shear is too small to counter the free surface attraction, both

dislocations will reach the free surface.

 With an adequately large applied strain rate, the attraction to the free surface can

be countered for one of the dislocations and continued straining moves that dislocation

towards the oxide interface. As the shear increases, it quickly becomes the dominant

interaction acting upon the dislocation. During this stage, the velocity of the dislocation

should approach twice the steady state velocity given by Equation 5.7 as there is only

one dislocation still active within the system. A plot of the dislocation's position with

time shows that this is the case for the smallest simulation (Figure 5.8). For the larger

simulations, the dislocation velocity is smaller than the predicted steady state velocity.

 When the dislocation is within 10-20 Å of the oxide interface, it is observed to

move faster for all of the simulation sizes. In the smallest simulation, the dislocation

moves towards the interface quicker than what the steady state velocity predicts

indicating an attractive effect. For the larger simulations, the velocity during this range

is seen to be comparable to the steady state value.

 111

Figure 5.8: The position of the dislocations in the one oxide system as a constant shear displacement

is applied. The top dislocation is seen to approach the predicted steady state velocity then

accelerate faster when close to the oxide interface.

5.5.2 Two Oxide Interfaces

 The second and third system designs that placed oxide layers on both x surfaces

eliminated the issue of the free surface attraction overpowering any interaction with the

oxide interface. This allowed for the long range interaction of the dislocations with the

oxide interfaces to be studied.

 Applying a constant shear displacement causes the two dislocations to move

away from each other and towards opposite oxide interfaces. Similar to what was

observed with the single oxide system, the velocity of the dislocations in the smallest

 112

simulation are comparable to the steady state value obtained from Equation 5.7, while

the larger simulations show the measured velocities to be smaller than the steady state.

Also, the velocities appear to increase when the dislocations are within 10-20 Å from

the interface.

 The position vs. time plots for the larger simulations (Figure 5.9(b)) did reveal

some interesting behaviors. Although the dislocation velocities are not at the predicted

steady state values, they nevertheless remain constant for a period of time. Then, nearly

simultaneously, the two dislocations increase speed and remain at the new rate until the

dislocations are within 10-20 Å from the interface, at which point they increase speed

again. This stepwise increase in velocity is intriguing as it suggests a sudden change in

the interactions with the dislocation, either due to the oxide or the simulation design.

Figure 5.9: The displacement of the dislocations with time due to a constant applied shear strain for

the systems with oxide layers on both x surfaces. (a) The dislocation response for the 2X simulation

matches with the steady state behavior (dashed line) before accelerating near the interface. (b) The

dislocation response for the 4X simulation showing regions of consistent velocity below the steady

state velocity.

 113

In an attempt to better investigate the interaction, the 2X system with the oxide

added on was tested by applying the shear in increments at the same rate as used before,

but with 10 ps of holding at certain strain values before the next increment. This

simulation was performed at 300 K. Each increment was shown to result in the two

dislocations moving apart from each other, only to stop at specific distances during the

hold periods. The distance between the two dislocations at the end of each hold period

is plotted vs. the applied strain in Figure 5.10(a) along with the predicted separation

behavior given by Equation 5.6 showing a good agreement between the two. The

separation distance is seen to initially be slightly greater than what is predicted, but then

becomes slightly less than predicted at higher strains. While this is most likely just

scatter, it could indicate a change in the interactions.

Figure 5.10: (a) Dislocation separation vs. applied shear for incremental loading showing behavior

consistent with Equation 5.7. (b) The acceleration of a dislocation to the oxide interface during

incremental loading. The movement of the dislocation both during the final strain increment and

the previous increment are shown. A fit was found for the free surface attraction.

 114

 As the dislocations were moved by this incremental shearing, it was noticed that

both did not move at the same rate and one approached the oxide interface sooner than

the other. The dislocation that was closer to the free surface was observed to accelerate

towards the interface immediately following the last incremental strain. The dislocation

was 60 Å from the interface prior to the last strain increment, while the total predicted

distance for both dislocations to move due to this increment was 20 Å. This indicates

that the interface clearly had an attractive effect.

 The dislocation's position with respect to the interface is plotted in Figure

5.10(b) showing not only the movement due to the last strain increment, but also the

prior increment. Using the same acceleration model as was used with the free surface

attraction, a good fit was found for the attracting by setting the initial velocity to 3.3

Å/ps and the attraction constant, C, to 65. The initial velocity was set to match what

was observed with the previous increment. This was done as an alternative run that did

not apply the final strain saw the dislocation remain at 60 Å away from the interface for

over 100 ps. Thus, the motion due to the final strain increment was necessary for the

attraction of the interface to occur. The value of the attraction constant is roughly 1/4-

1/5 the constant found for the free surface indicating that oxide attraction is indeed

weaker and consistent with the 1/3-1/4 strength predicted by the modulus based image

force model.

 Simulations were also performed in the zero applied strain conditions. With

simulations both holding the shear strain at zero and simulations leaving the y surfaces

unconstrained, the dislocations did not move. This was true for both the systems that

featured oxides both farther away and at the same distance from the dislocations as the

 115

dislocations were from the free surfaces in the free surface simulations. Within these

simulations, the dislocations barely moved from their initial positions and were not seen

to separate due to their repulsion of each other. Therefore, there is a large driving force

within the system preventing the dislocations from moving. As the only difference

between this simulation setup and the free surface simulation setup is the oxide at the

surfaces, it stands to reason that the presence of the oxide has a long range repulsive

effect on the dislocations for this system design.

Figure 5.11: An image of the 4X system with an oxide placed at the same distance as the free

surfaces in the earlier simulations. This image was taken from an unconstrained run after 50 ps

showing that the dislocations have not moved from their initial positions.

 The most likely explanation for the long range repulsion is the result of the

oxide interfaces placing the silicon surfaces in tension. The oxide is grown by inserting

oxygen atoms into the silicon lattice. Because of this, the oxide wants to expand in all

three directions, but is constrained by the silicon and the system design. While both x

surfaces are in tension, the center of the silicon block is less affected resulting in a stress

 116

gradient. This is noticeable in the unconstrained y surface simulations as a curvature is

observed in the y surface. Stress gradients require that there be shear stresses within the

simulation that can interact with the dislocations. For this simulation shape and design,

the resulting shear stresses act as a long range repulsive force on the dislocations.

 The interaction of the oxide layer on the dislocations therefore depends on the

stress state that the oxide imposes on the system. As the image force attraction was

found to be short ranged and weak, the longer range stress based interaction is therefore

the most important effect of the oxide on the dislocations. The resulting stresses due to

the oxide depend highly upon the system geometry and conditions. Therefore, the exact

effect that the oxide has on the motion of the dislocations will be different for different

systems.

 As the long range interaction was found to be repulsive for the systems studied

here, it follows that this can be the case for many systems, especially those that are

similar. With a strong repulsive effect, the oxide will hinder the motion of dislocations

towards the interfaces making it more likely for a large number of dislocations to be

present within a volume of the material. In turn, this would allow for the measured

hardness of the spheres to increase, as discussed in Chapter 4. If the stress state

associated with the oxide on silicon spheres results in a strong enough repulsive effect,

it could account for the experimentally observed hardness.

5.6 Summary

 Dislocation interactions within diamond cubic silicon were investigated with

molecular dynamics by using a variety of system configurations. It was found that with

 117

a proper understanding of the effects that the defined simulation conditions have upon

the measured response, the simulated behavior of the dislocations can be directly

compared to the elasticity based theory. This comparison showed that at least

qualitatively the simulated dislocation interactions match with the corresponding

interactions from elementary dislocation theory. Because of this, these simulations or

similarly designed simulations can provide an effective method for studying the nature

of dislocations at the atomic scale.

 Using periodic boundary conditions, two edge dislocations of opposite sign on

parallel slip planes were shown to repulse each other when initially placed directly

above and below each other. The motion of the dislocations in response to an externally

applied shear strain was also shown to be consistent with geometrically necessary strain

relaxation. A maximum limit for the dislocation velocity was also observed.

 Introducing free surfaces into the system showed that the dislocations were

attracted towards it. The free surface attraction was shown to be proportional to the

inverse of the distance between the free surface and the position of the dislocation. This

relationship matches with the image force model used in dislocation theory. The

motion of the dislocation is shown to be impeded by the Peierls barrier when the system

temperature is below 10 K.

 Attraction of a dislocation to an oxide interface was also observed and was

measured to be roughly 1/4-1/5 the strength of the attraction to a free surface. This

corresponds to the image force model, which predicts that the attraction should be

around 1/3-1/4 the free surface attraction. However, the oxide attraction appears to only

 118

be a short range behavior as the dislocation had to be coerced into being less than 60 Å

from the interface before the attraction occurred.

 At larger distances, the presence of the oxide appears to have a repulsive effect

on the dislocations. Constant strain rate simulations of the larger systems showed the

dislocations moving at steady rates smaller than what was expected when far from the

interface. In addition, the dislocations in the unconstrained systems did not move at all,

not even to separate due to the dislocation-dislocation repulsion. This long range

repulsion cannot be explained with the image force model and appears to result from the

stress field due to the presence of the oxide. Understanding the effect of the oxide on

the behavior of the dislocations within a Si/SiO2 system therefore greatly depends on

the stresses due to the oxide and the geometry of the system.

 119

Chapter Six: Summary and Conclusions

6.1 Research Summary

 The various molecular dynamics simulations that were reported here present a

more comprehensive description of the yielding behaviors that occur within silicon

nanoparticles. Chapter 3 used the Tersoff potential to investigate the possible

transformation to the -Sn phase that can occur within these spheres. The Stillinger-

Weber potential was used in Chapter 4 and allowed for a study of how dislocations

relate to the experimentally observed yielding and hardening behaviors. Chapter 5

continued the analysis of dislocations within silicon using a highly modified version of

the Stillinger-Weber potential to measure the interactions active on the dislocations,

including the effect of free surfaces and oxide interfaces.

 Results with the Tersoff potential in Chapter 3 showed that the transformation

from DC silicon to -Sn silicon can occur within the spheres at high strains. However,

this transformation is shown to be highly dependent on the crystallographic direction

that the compression is applied along. For 10 nm spheres, no -Sn was observed for

[110] and [111] compressed spheres below 40% strain, whereas [100] compressed

spheres showed evidence of -Sn starting to form around 20% strain. Given the

random orientation of experimentally compressed spheres, -Sn will only form within

favorably oriented spheres of comparable sizes.

 Additionally, the high hardness values previously reported with the simulated

compression of Tersoff silicon nanospheres was shown to not correspond with the -Sn

 120

transformation. Instead, the high hardness was due to the simulations running at or near

0 K as simulations at 300 K resulted in considerably lower values. The presence of -

Sn was shown to have an effect on the hardening behavior, but only at strains greater

than 0.4 and for the favorably oriented [100] compressed sphere.

 The Stillinger-Weber results in Chapter 4 showed that dislocations can explain

both the hardening and yielding properties observed within the experimentally

compressed spheres. Use of this potential resulted in the formation of a considerable

number of dislocations. Compression along the [100] orientation was the most

favorable for dislocations, and these dislocations were observed to nucleate on {110}

planes. This {110} nucleation was an unexpected result and was found to occur due to

the pathway for homogeneous nucleation on this plane being comparable to the pathway

on the expected {111} planes with the Stillinger-Weber potential. More accurate

quantum based calculations showed the {110} nucleation to be much less favorable and

therefore their appearance is likely an artifact of using the Stillinger-Weber potential.

 Even with this possibly unrealistic nucleation process, the vast number of

dislocations observed with this potential allowed for the effect of their presence to be

related to the observed experimental behaviors. Load drops were seen to correspond to

dislocation motion indicating that the experimentally observed displacement excursions

can be due to dislocation yielding. The dislocations that formed traveled through the

spheres until they reached a free surface resulting in yielding deformation and a

softening behavior. However, for a short period just after the initial yield point when

the number of dislocations contained within the sphere is increasing, regions of

hardening and consistent hardness were seen. The slope of this hardening behavior was

 121

directly compared to the experimentally observed hardening showing a decent

agreement. The experiments show hardening even at low strains (0.1-0.2) which can be

explained by the dislocation hardening, but not by the -Sn hardening.

 Chapter 5 looked at the interactions that affect dislocations in silicon. The

primary motivating factor for this work was the limitation of the spheres used in

Chapters 3 and 4 in that they lacked an oxide layer. This lack of an oxide layer allowed

for the vast number of dislocations that were observed in the Stillinger-Weber spheres

of Chapter 4 being able to reach the surface and disappear. It was predicted that had

there been an oxide layer on the surface of the spheres, the dislocations contained

within would have either been confined within the sphere, or at least slightly more

impeded. With more dislocations contained in the sphere, the hardening associated with

those dislocations would be more prevalent and last for a longer period of time. As

opposed to simply placing an oxide on the outside of one of these spheres, it was

deemed more appropriate to investigate simpler more repeatable simulations first to

determine the effectiveness of the oxide.

 With a proper understanding of how the conditions imposed upon the system

affect the nature of the dislocation interactions, simulations of this type were shown to

be effective and comparable to the theoretical models. Tests without the oxides showed

the presence of dislocation-dislocation repulsion, the correct nature of image force

attractions to free surfaces, and the response due to an applied shear strain.

Additionally, an upper limit was found for the dislocation velocities and simulations

below 10 K showed effects of the Peierls barrier.

 122

 As for simulations with the oxide, the resulting response of the dislocations was

more complex than what was predicted with the image force based theory. A weak

attraction of a dislocation to one of the oxide interfaces was observed and seen to be

consistent with the image force model. However, the long range behavior of the

dislocations differed greatly and the presence of the oxide was repulsive to the

dislocations. The repulsion appears to result from the stress state associated with the

oxide creating a tensile stress within the surface of the silicon. It was therefore

concluded that to obtain a proper understanding of how the presence of the oxide affects

dislocations within a given silicon system, it is less important to know the image force

attraction than it is the oxide induced stress state.

6.2 Conclusions

 Altogether, the results presented in this thesis present an interesting description

of the yielding associated with compressed silicon nanoparticles. There appears to be

some size dependence to the specific observed yielding mechanisms. At the smallest

sizes, there is expected to be a cutoff size for dislocation nucleation to occur. With the

Stillinger-Weber potential, this cutoff was seen to be around the 5 nm diameter size as

at most one dislocation was found in spheres of this size. The Tersoff potential showed

a much larger cutoff diameter occurring between 10-20 nm.

 At sizes slightly larger than the dislocation cutoff, the results here show that the

behavior of the experimentally compressed nanospheres are best described by

dislocations being the dominant yielding mechanism. The low strain hardening and the

displacement excursions can both be explained by dislocation activity. -Sn is not

 123

expected to have a large presence in spheres within this size range as the Tersoff

simulations show it to only form for favorable orientations.

 While further increases in size were not studied here, the behavior can be

inferred. -Sn formation was highly dependent on the compression direction for the

nanospheres, but has been observed to form during nanoindentation of bulk silicon [22-

25]. This indicates that as the size of the particles increases, the -Sn transformation

becomes more likely.

6.3 Recommended Future Work

 As comprehensive as the study of the silicon nanoparticles was here in that

various sizes, potentials, temperatures and orientations were studied, there are still

questions that could be answered with further simulations. Ideally, one would want to

investigate larger spheres using both potentials. Larger Stillinger-Weber spheres would

allow for even more dislocations to form and allow for the interactions between the

dislocations to be better studied. Results from the Tersoff potential at larger sizes also

should be intriguing as the 20 nm run at 300 K revealed an interesting change in the

yielding behavior with dislocations nucleating and -Sn forming outside of the particle's

center. These large scale Tersoff spheres offer the opportunity of investigating

dislocations and -Sn simultaneously within these spheres.

 It would also be incredibly useful for the larger spheres to be compressed along

directions other than the [100] crystallographic direction. These alternate orientations

could be beneficial as the {110} plane dislocations would be less favorable for the

Stillinger-Weber potential better matching with what is observed experimentally. Work

 124

with the Tersoff potential would also show whether dislocations or -Sn would form for

these alternate orientations at t larger sizes and larger displacements. Knowing this

would go a long way to deciphering the experimental results.

 The work in Chapter 5 with the dislocation interaction simulations was only an

initial investigation of whether this or a similar technique could be used to better

understand dislocations. As this was shown to be possible, it opens up the door for

much continued work. Further studies should be done to find more quantitative

descriptions of the interaction forces acting upon the dislocations. This would allow for

different properties related to the material and the dislocations to be determined. A

series of simulations could also conceivably be used to compare the interactions to the

elasticity based dislocation theory models or to determine expressions for interactions in

which determining the elasticity model is too difficult.

 The dislocation simulations also serve as a basis for designing new systems for

studying other dislocation related properties. For example, other material systems may

be investigated, including ones where a known repulsive interface is present. Multiple

dislocations can be placed on the same slip plane resulting in a dislocation pile-up. This

pile-up is an important factor in grain boundary and second phase hardening

mechanisms.

 In addition to these direct continuations of the research presented here, two more

complex research studies are proposed. The first is the inevitable combination of the

spherical particle simulations with the oxide interaction simulations. The results of the

particle compression simulations showed that the experimentally observed hardening

could be explained by dislocation yielding. However considerable hardening and large

 125

hardness values were not observed, which was attributed to the dislocations

disappearing at the oxide free particle surface. The dislocation interaction simulations

did show that the oxide can repulse dislocations due to the stress state caused by the

presence of the oxide.

 But in order to determine if the stress state associated with the oxide on the

spheres is repulsive, further work is necessary. Continuum based calculations can be

used to analyze the stresses introduced by the oxide in order to determine how they

should affect dislocations. This can be done for systems comparable to both the

dislocation interaction simulations and a spherical particle with an appropriate oxide.

 In the end, it would be considerably useful in order to run at least one molecular

dynamics simulation of a particle with an oxide layer created in a manner similar to

what was used here. Any simulation would be considerably computationally expensive

for a number of reasons. The Watanabe potential is more complex than the basic

Stillinger-Weber potential making it slower to calculate. In addition, any simulation

would have to be larger than 20 nm in order to see considerable dislocations to

investigate the hardening. The particle size must also be adjusted as the growth of the

oxide decreases the effective size of the silicon crystal. Finally, the oxide growing

routine takes considerable time to grow a realistically thick oxide. This last step could

be avoided by using a faster but possibly less realistic method for creating the oxide.

 The final major proposal to future work involves looking at the ReaxFF

potential [78-80] as an alternative potential for Si and Si-SiO2 systems. The ReaxFF

potential was initially designed to better match the quantum behavior of numerous

atomic materials by being conditionally dependent on the number and composition of

 126

the neighboring atoms. This conceivably results in a more realistic description of

silicon and the oxide than can be obtained with the simpler potentials. The ReaxFF

potential has also been shown to give excellent agreement between propagation of

cracks in tension within silicon with quantum based models [78, 79].

 The main downside with the ReaxFF potential is that it is considerably more

computationally intense than the simpler empirical potentials. The crack propagation

studies circumvented this by using the Tersoff potential for the silicon atoms in the bulk

crystal and the ReaxFF potential only for the atoms at or around the crack and resulting

free surface. This hybrid method requires that the boundary between the two potentials

must be constantly updated as the crack propagates. Additional challenges arise for

systems with compressive loads as the likelihood for plastic yielding becomes more

pronounced. The hybrid method then becomes a liability as the boundary between the

two potentials could interfere with the plastic behavior. Therefore, it would be

preferable to use ReaxFF for the whole sphere.

 Even with these considerations, the ReaxFF potential offers considerable

promise for more realistic studies at the cost of being computationally intense. Initial

work with this potential would involve comparing the elastic and plastic properties of

the ReaxFF potential with other potentials and quantum based calculations. Once the

elastic constants, the dislocation characteristics, and the phase transformation nature of

the potential have been identified, larger scale simulations of the nanostructures can be

accomplished.

 127

References

[1] W. M. Miller, D. M. Tanner, S. L. Miller, K. A. Peterson, Sandia National

Laboratories, 1998, 7.

[2] http://www.sandia.gov/news-center/news-releases/2005/gen-science/mems.html

2005.

[3] A. R. Beaber, L. J. Qi, J. Hafiz, P. H. McMurry, J. V. R. Heberlein, W. W.

Gerberich, S. L. Girshick, Surface and Coatings Technology 2007, 202, 871.

[4] W. W. Gerberich, W. M. Mook, M. J. Cordill, C. B. Carter, C. R. Perrey, J.

Heberlein, S. L. Girshick, International Journal of Plasticity 2005, 21, 2391.

[5] W. C. Oliver, G. M. Pharr, Journal of Materials Research 1992, 7, 1564.

[6] H. Hertz, Journal fur die reine und angewandte Mathematik 1882, 92, 156.

[7] W. W. Gerberich, W. M. Mook, C. R. Perrey, C. B. Carter, M. I. Baskes, R.

Mukherjee, A. Gidwani, J. Heberlein, P. H. McMurry, S. L. Girshick, Journal of the

Mechanics and Physics of Solids 2003, 51, 979.

[8] M. R. VanLandingham, T. F. Juliano, M. J. Hagon, Measurement Science and

Technology 2005, 16, 2173.

[9] J. F. Cannon, Journal of Physical and Chemical Reference Data 1974, 3, 781.

[10] J. Crain, G. J. Ackland, J. R. Maclean, R. O. Piltz, P. D. Hatton, G. S. Pawley,

Physical Review B 1994, 50, 10343.

[11] J. C. Jamieson, Science 1963, 139, 762.

[12] M. I. McMahon, R. J. Nelmes, Physical Review B 1993, 47, 8337.

[13] H. Olijnyk, S. K. Sikka, W. B. Holzapfel, Physics Letters 1984, 103A, 137.

[14] R. S. Wentorf, Jr., J. S. Kasper, Science 1963, 25, 338.

[15] R. O. Piltz, J. R. Maclean, S. J. Clark, G. J. Ackland, P. D. Hatton, J. Crain,

Physical Review B 1995, 52, 4072.

[16] Y.-X. Zhou, F. Buehler, J. R. Sites, I. L. Spain, Solid State Communications

1986, 59, 679.

 128

[17] L. L. Boyer, E. Kaxiras, J. L. Feldman, J. Q. Broughton, M. J. Mehl, Physical

Review Letters 1991, 67, 715.

[18] F. H. Stillinger, T. A. Weber, Physical Review B 1985, 31, 5262.

[19] D. E. Kim, S. I. Oh, Journal of Applied Physics 2008, 104, 013502(6).

[20] J. Tersoff, Physical Review B 1988, 37, 6991.

[21] J. Tersoff, Physical Review B 1988, 38, 9902.

[22] D. E. Kim, S. I. Oh, Nanotechnology 2006, 17, 2259.

[23] Y.-H. Lin, T.-C. Chen, Applied Physics A 2008, 92, 571.

[24] Y.-H. Lin, S.-R. Jian, Y.-S. Lai, P.-F. Yang, Nanoscale Research Letters 2008,

3, 71.

[25] C. F. Sanz-Navarro, S. D. Kenny, R. Smith, Nanotechnology 2004, 15, 692.

[26] D. H. Alsem, C. L. Muhlstein, E. A. Stach, R. O. Ritchie, Scripta Materiala

2008, 59, 931.

[27] V. Domnich, Y. Gogotsi, S. Dub, Applied Physics Letters 2000, 76, 2214.

[28] J.-i. Jang, M. J. Lance, S. Wen, T. Y. Tsui, G. M. Pharr, Acta Materialia 2005,

53, 1759.

[29] T. Juliano, V. Domnich, Y. Gogotsi, Journal of Materials Research 2004, 19,

3099.

[30] A. Kailer, Y. G. Gogotsi, K. G. Nickel, Journal of Applied Physics 1997, 81,

3057.

[31] A. B. Mann, D. van Heerden, J. B. Pethica, T. P. Weihs, Journal of Materials

Research 2000, 15, 1754.

[32] K. Wu, X. Q. Yan, M. W. Chen, Applied Physics Letters 2007, 91, 101903(3).

[33] P.-F. Yang, S.-R. Jian, Y.-S. Lai, T.-H. Chen, R.-S. Chen, "Nanoindentation-

induced phase transformation of silicon", presented at International Microsystems,

Packaging, Assemby Conference, Taiwan, 2006.

[34] I. V. Gredneva, Y. V. Milman, V. I. Trefilov, Physica Status Solidi a 1972, 14,

177.

[35] D. R. Clarke, M. C. Krull, P. D. Kirchner, R. F. Cook, B. J. Hockey, Physical

Review Letters 1988, 60, 2156.

 129

[36] I. Zarudi, T. D. Nguyen, L. C. Zhang, Applied Physics Letters 2005, 86,

011922(3).

[37] I. Zarudi, L. C. Zhang, W. C. D. Cheong, T. X. Yu, Acta Materialia 2005, 53,

4795.

[38] I. Zarudi, L. C. Zhang, M. V. Swain, Applied Physics Letters 2003, 82, 1027.

[39] I. Zarudi, J. Zou, W. McBride, L. C. Zhang, Applied Physics Letters 2004, 85,

932.

[40] I. Zarudi, J. Zou, L. C. Zhang, Applied Physics Letters 2003, 82, 874.

[41] W. C. D. Cheong, L. C. Zhang, Nanotechnology 2000, 11, 173.

[42] Y.-H. Lin, T.-C. Chen, P.-F. Yang, S.-R. Jian, Y.-S. Lai, Applied Surface

Science 2007, 254, 1415.

[43] G. S. Smith, E. B. Tadmore, E. Kaxiras, Physical Review Letters 2000, 84, 1260.

[44] J. Deneen, W. M. Mook, A. M. Minor, W. W. Gerberich, C. B. Carter, Journal

of Materials Science 2006, 41, 4477.

[45] J. Deneen Nowak, W. M. Mook, A. M. Minor, W. W. Gerberich, C. B. Carter,

Philosophical Magazine 2007, 87, 29.

[46] W. W. Gerberich, J. Michler, W. M. Mook, R. Ghisleni, F. Ostlund, D. D.

Stauffer, R. Ballarini, Journal of Materials Research 2008, 24, 898.

[47] W. M. Mook, J. D. Nowak, C. R. Perrey, C. B. Carter, R. Mukherjee, S. L.

Girshick, P. H. McMurry, W. W. Gerberich, Physical Review B 2007, 75, 214112.

[48] J. D. Nowak, A. R. Beaber, O. Ugurlu, W. W. Gerberich, O. L. Warren,

Microscopy and Microanalysis 2007, 15, 722.

[49] J. D. Nowak, A. R. Beaber, O. Ugurlu, S. L. Girshick, W. W. Gerberich, Scripta

Materiala 2010, 62, 819.

[50] A. M. Minor, E. T. Lilleodden, M. Jin, E. A. Stach, D. C. Chrzan, J. W. Morris

Jr., Philosophical Magazine 2005, 85, 323.

[51] F. Ostlund, K. Rzepiejewska-Malyska, K. Leifer, L. M. Hale, Y. Tang, R.

Ballarini, W. W. Gerberich, J. Michler, Advanced Functional Materials 2009, 19, 2439.

[52] D. Stauffer, W. W. Gerberich, Unpublished 2011.

[53] J. F. Justo, R. D. Menezes, L. V. C. Assali, Physical Review B 2007, 75, 045303.

 130

[54] P. W. Leu, A. Svizhenko, K. Cho, Physical Review B 2008, 77, 235305.

[55] R. D. Menezes, J. F. Justo, L. V. C. Assali, Physica Status Solidi a 2007, 204,

951.

[56] M. Menon, D. Srivastava, Physical Review B 2004, 70, 125313.

[57] Z. Yang, Z. Lu, Y.-P. Zhao, Journal of Applied Physics 2009, 106, 023537.

[58] K.-C. Fang, C.-I. Weng, S.-P. Ju, Journal of Nanoparticle Research 2009, 11,

581.

[59] P. Valentini, T. Dumitrica, Physical Review B 2007, 75, 224106.

[60] P. Valentini, W. W. Gerberich, T. Dumitrica, Physical Review Letters 2007, 99,

175701.

[61] N. Zhang, Q. Deng, Y. Hong, L. Xiong, S. Li, M. Strasberg, W. Yin, Y. Zou, C.

R. Taylor, G. Sawyer, Y. Chen, Journal of Applied Physics 2011, 109, 063534.

[62] J. E. Jones, Proceedings of the Royal Society of London. Series A 1924, 106,

463.

[63] J. E. Lennard-Jones, Transactions of the Faraday Society 1929, 25, 668.

[64] W. C. Swope, H. C. Andersen, P. H. Berens, K. R. Wilson, Journal of Chemical

Physics 1982, 76, 637.

[65] H. Balamane, T. Halicioglu, W. A. Tiller, Physical Review B 1992, 46, 2250.

[66] J. R. Ray, Computer Physics Reports 1988, 8, 109.

[67] I. P. Batra, F. F. Abraham, S. Ciraci, Physical Review B 1987, 35, 9552.

[68] R. A. Brown, D. Maroudas, T. Sinno, Journal of Crystal Growth 1994, 137, 12.

[69] T. Sinno, Z. K. Jiang, R. A. Brown, Applied Physics Letters 1996, 68, 3028.

[70] J. Godet, L. Pizzagalli, S. Brochard, P. Beauchamp, Journal of Physics:

Condensed Matter 2003, 15, 6943.

[71] J. Tersoff, Physical Review Letters 1986, 56, 632.

[72] Z. Jiang, R. A. Brown, Chemical Engineering Science 1994, 49, 2991.

[73] Z. Jiang, R. A. Brown, Physical Review Letters 1995, 74, 2046.

[74] G. J. Kramer, N. P. Farragher, B. W. H. van Beest, R. A. van Santen, Physical

Review B 1991, 43, 5068.

 131

[75] B. W. H. van Beest, G. J. Kramer, R. A. van Santen, Physical Review Letters

1990, 64, 1955.

[76] T. Watanabe, H. Fujiwara, H. Noguchi, T. Hoshino, I. Ohdomari, Japanese

Journal of Applied Physics 1999, 38, L366.

[77] T. Watanabe, I. Ohdomari, Thin Solid Films 1999, 343-344, 370.

[78] M. J. Buehler, H. Tang, A. C. T. van Duin, W. A. I. Goddard, Physical Review

Letters 2007, 99, 165502.

[79] M. J. Buehler, A. C. T. van Duin, W. A. I. Goddard, Physical Review Letters

2006, 96, 095505.

[80] A. C. T. Van Duin, A. Strachan, S. Stewman, Q. Zhang, X. Xu, W. A. I.

Goddard, Journal of Physical Chemistry A 2003, 107, 3803.

[81] P. Ganster, G. Treglia, A. Saul, Physical Review B 2010, 81, 045315.

[82] J. Dalla Torre, J.-L. Bocquet, Y. Limoge, J.-P. Crocombette, E. Adam, G.

Martin, T. Baron, P. Rivallin, P. Mur, Journal of Applied Physics 2002, 92, 1084.

[83] LAMMPS Molecular Dynamics Simulator. http://lammps.sandia.gov/.

[84] W. G. Hoover, Physical Review A 1985, 31, 1695.

[85] L. M. Hale, X. Zhou, J. A. Zimmerman, N. R. Moody, R. Ballarini, W. W.

Gerberich, Computational Materials Science 2011, In Press.

[86] J. A. Zimmerman, C. L. Kelchner, P. A. Klein, J. C. Hamilton, S. M. Foiles,

Physical Review Letters 2001, 87, 165507.

[87] K. L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge,

MA 1985.

[88] D. D. Stauffer, L. M. Hale, A. R. Beaber, O. Ugurlu, J. D. Nowak, S. L.

Girshick, R. Ballarini, W. W. Gerberich, In preparation 2011.

[89] M. Vergeles, A. Maritan, J. Koplik, J. Banavar, Physical Review E 1997, 56,

2626.

[90] T. Frauenheim, F. Weich, T. Kohler, S. Uhlmann, D. Porezag, G. Seifert,

Physical Review B 1995, 52, 11492.

[91] R. Rurali, E. Hernandez, Computational Materials Science 2003, 28, 85.

[92] Y.-M. Juan, E. Kaxiras, Philosophical Magazine A 1996, 74, 1367.

 132

[93] J. Weertman, J. R. Weertman, Elementary Dislocation Theory, Oxford

University Press, New York 1964.

 133

Appendix One: Identification Parameter Calculation

 This appendix contains the code for the program that performed calculations to

help in the analysis of the sphere compressions. The program opens and reads the

atomic configuration files created by LAMMPS using the dump command with the

atom style. With the atomic positions, it creates a nearest neighbor list for all of the

atoms and calculates the slip vector (slp), the instantaneous slip vector (islp), the

coordination number (coor), and the angular parameters (ang) that were used in the

identification of defects. These parameters are then saved in separate files in a

comparable format to the LAMMPS dump files. In addition, the log files for the

LAMMPS runs were also open and read allowing for the contact area, strain and contact

stress due to the compression to be calculated.

 As most of the parameters investigated involved the creation of a list of nearest

neighbors, the time to run this program can be high for large atomic systems. In order

to reduce this run time, only a complete neighbor list is calculated from the initial step.

All other subsequent neighbor lists are created by using the neighbor lists at the

previous step as a basis. Each subsequent list only looked at atoms that were previously

neighbors of a given atom, neighbors of the neighbors for that atom, and neighbors of

the neighbors' neighbors. This greatly reduced the computation time and only 8 out of

the 209121 atoms of the 20 nm spheres were observed to have values different from

what was found by calculating the full neighbor list every time.

 134

#include <iostream>

#include <fstream>

#include <stdlib.h>

#include <math.h>

#include <string>

#include <iomanip>

#include <sstream>

using namespace std;

#define PI 3.14159265

class Vect

{

public:

 Vect();

 Vect(double[3]);

 void set(double[3]);

 void set(double,double,double);

 double show(int);

 double coord[3], mag;

 Vect operator+ (Vect);

 Vect operator- (Vect);

 Vect operator* (double);

 Vect operator/ (double);

 Vect& operator=(const Vect&);

};

ostream &operator <<(ostream &out, Vect &vec)

{

 out << fixed << setprecision (5);

 out << vec.coord[0]*vec.mag << " " << vec.coord[1]*vec.mag << " " << vec.coord[2]*vec.mag;

 return out;

}

double dot(Vect param1, Vect param2)

{

 return param1.coord[0]*param1.mag*param2.coord[0]*param2.mag +

param1.coord[1]*param1.mag*param2.coord[1]*param2.mag +

param1.coord[2]*param1.mag*param2.coord[2]*param2.mag;

}

Vect Vect::operator+ (Vect param)

{

 double temp[3];

 Vect temp1;

 for (int i=0;i<3;i++)

 temp[i]=show(i)+param.show(i);

 temp1.set(temp);

 return temp1;

}

Vect Vect::operator- (Vect param)

{

 double temp[3];

 Vect temp1;

 for (int i=0;i<3;i++)

 temp[i]=show(i)-param.show(i);

 temp1.set(temp);

 135

 return temp1;

}

Vect Vect::operator* (double param)

{

 Vect temp1 = *this;

 temp1.mag*=param;

 return temp1;

}

Vect Vect::operator/ (double param)

{

 Vect temp1 = *this;

 temp1.mag/=param;

 return temp1;

}

Vect& Vect::operator =(const Vect& param)

{

 for (int i=0;i<3;i++)

 coord[i]=param.coord[i];

 mag=param.mag;

 return *this;

}

Vect::Vect()

{

 coord[0] = 0;

 coord[1] = 0;

 coord[2] = 0;

 mag = 0;

}

Vect::Vect(double x[3])

{

 set(x);

}

void Vect::set(double at,double bt,double ct)

{

 double x[3];

 x[0]=at;

 x[1]=bt;

 x[2]=ct;

 set(x);

}

void Vect::set(double x[3])

{

 double temp;

 temp = x[0]*x[0]+x[1]*x[1]+x[2]*x[2];

 mag = sqrt(temp);

 if (mag==0)

 {

 for (int i=0;i<3;i++)

 coord[i]=0;

 }

 else

 {

 136

 for (int i=0;i<3;i++)

 coord[i]=x[i]/mag;

 }

}

double Vect::show(int position)

{

 if (position>=0&&position<=2)

 return coord[position]*mag;

 else

 return 0;

}

class Atom

{

public:

 Vect pos;

 int type,id,neigh[12],nneighs;

 bool contact;

 Atom();

 void set(int, int, double [3]);

 void check(Atom &, double);

 void clear();

 Vect operator+ (Atom);

 Vect operator- (Atom);

 Atom& operator=(const Atom&);

};

ostream &operator <<(ostream &out, Atom &atomo)

{

 out << atomo.nneighs;

 return out;

}

Vect Atom::operator+ (Atom param)

{

 return pos + param.pos;

}

Vect Atom::operator- (Atom param)

{

 return pos - param.pos;

}

Atom::Atom()

{

 clear();

}

void Atom::clear()

{

 pos.set(0,0,0);

 id = 0;

 type = 0;

 nneighs=0;

 contact = false;

 for (int i=0;i<12;i++)

 neigh[i]=0;

 137

}

void Atom::set(int name, int types, double x[3])

{

 pos.set(x);

 type = types;

 id = name;

}

void Atom::check(Atom &a, double cutoff)

{

 Vect temp;

 bool newcheck;

 temp = pos - a.pos;

 newcheck = true;

 if (temp.mag<=cutoff && id!=a.id)

 {

 for (int i=0;i<nneighs;i++)

 {

 if (neigh[i]==a.id) newcheck=false;

 }

 if (newcheck)

 {

 neigh[nneighs]=a.id;

 nneighs++;

 a.neigh[a.nneighs]=id;

 a.nneighs++;

 }

 }

}

Atom& Atom::operator =(const Atom& param)

{

 pos=param.pos;

 type=param.type;

 id=param.id;

 nneighs=param.nneighs;

 for (int i=0;i<nneighs;i++)

 neigh[i]=param.neigh[i];

 for (int i=nneighs;i<8;i++)

 neigh[i]=0;

 contact=param.contact;

 return *this;

}

class Data

{

public:

 Data();

 void set(double[6]);

 double p[2], f[2], pe, r[2], s[2], d, e;

 void stress();

 void strain(double, double);

 Data& operator=(const Data&);

};

 138

ostream &operator <<(ostream &out, Data &dat)

{

 out << setw(13) << dat.d << setw(13) << dat.e;

 out << setw(13) << dat.f[0] << setw(13) << dat.f[1];

 out << setw(13) << dat.s[0] << setw(13) << dat.s[1];

 out << setw(13) << dat.r[0] << setw(13) << dat.r[1];

 out << setw(13) << dat.pe;

 return out;

}

istream &operator >>(istream &in, Data &dat)

{

 double temp;

 in >> dat.p[0] >> dat.p[1] >> dat.f[0] >> dat.f[1] >> dat.pe >> temp;

 return in;

}

Data::Data()

{

 pe=0;

 d=0;

 e=0;

 for (int i=0;i<2;i++)

 {

 p[i]=0;

 f[i]=0;

 r[i]=0;

 s[i]=0;

 }

}

void Data::set(double data[5])

{

 p[0]=data[0];

 p[1]=data[1];

 f[0]=data[2];

 f[1]=data[3];

 pe=data[4];

}

void Data::stress()

{

 f[0]=f[0]*1.602177/1000;

 f[1]=f[1]*-1.602177/1000;

 for (int i=0;i<2;i++)

 {

 if (r[i]==0)

 s[i]=0;

 else

 s[i]=f[i]*100000/(PI*r[i]*r[i]);

 }

}

void Data::strain(double max, double min)

{

 139

 d = (max-min-p[0]+p[1])*.5;

 if (d<0)

 d=0;

 e = 2*d/(max-min);

}

Data& Data::operator =(const Data& param)

{

 pe=param.pe;

 d=param.d;

 e=param.e;

 for (int i=0;i<2;i++)

 {

 p[i]=param.p[i];

 f[i]=param.f[i];

 r[i]=param.r[i];

 s[i]=param.s[i];

 }

 return *this;

}

//***

**

int main()

{

 int max, natoms, num, type, ccountt, ccountb, count, c, ncheck, nlog, delta, check, avcount,

angcount,dsteps;

 double x[3], hold1, hold2, hold3, cutoff1, cutoff2, amax, amin, tempdata[5], avdata[5],

temperature, angular, cosang;

 string name, filen, filel, files, filei, filec, filea, temp1, temp2, temp3, temp4, temp5, temp6,

temp7, lhold;

 Vect slip, islip, centert, centerb, bond1, bond2;

 stringstream file1, file2, file3, file4, file5, file6, logf, line;

 char nums[10], buf[1024];

 bool nlist;

 cutoff1 = 3;

 cutoff2 = 0.1;

 max = 23040000;

 delta = 40000;

 nlog = 5;

 dsteps = max/delta+2;

 nlist = true;

 amax = 0;

 amin = 0;

 name = "atom.";

 file1 << name << 0;

 filen = file1.str();

 file1.seekp(ios_base::beg);

 ifstream fin0(filen.c_str());

 fin0 >> temp1 >> temp2;

 fin0 >> temp1;

 140

 fin0 >> temp1 >> temp2 >> temp3 >> temp4;

 fin0 >> natoms;

 fin0 >> temp1 >> temp2 >> temp3;

 fin0 >> temp1 >> temp2;

 fin0 >> temp1 >> temp2;

 fin0 >> temp1 >> temp2;

 fin0 >> temp1 >> temp2 >> temp3 >> temp4 >> temp5 >> temp6 >> temp7;

 Atom * atoms0 = new Atom[natoms]; //need for calculating slip vector

 Atom * atomsp = new Atom[natoms]; //need for calculating instantaneous slip vector

 cout << natoms << " ";

 cout.flush();

 //Read initial data

 for (int i=0;i<natoms;i++)

 {

 fin0 >> num >> type >> x[0] >> x[1] >> x[2];

 if (x[1]>amax)

 amax = x[1];

 if (x[1]<amin || amin==0)

 amin = x[1];

 atoms0[num-1].set(num,type,x);

 }

 fin0.close();

 cout << "Data in" << endl << "Nearest neighbor progress:";

 cout.flush();

 if (nlist==false)

 {

 //Compile nearest neighbor list

 for (int i=0;i<natoms;i++)

 {

 for (int j=0;j<i;j++)

 atoms0[i].check(atoms0[j],cutoff1);

 if (i%(natoms/10)==0)

 {

 cout << "=";

 cout.flush();

 }

 }

 cout << endl;

 ofstream nout("nlist.txt");

 for (int i=0;i<natoms;i++)

 {

 atomsp[i]=atoms0[i];

 nout << atoms0[i].id << " " << atoms0[i].nneighs << " ";

 for (int j=0;j<atoms0[i].nneighs;j++)

 nout << atoms0[i].neigh[j] << " ";

 nout << endl;

 }

 nout.close();

 }

 else

 {

 //Read in nearest neighbor list

 ifstream nin("nlist.txt");

 141

 for (int i=0;i<natoms;i++)

 {

 nin >> num;

 nin >> atoms0[num-1].nneighs;

 for (int j=0;j<atoms0[num-1].nneighs;j++)

 nin >> atoms0[num-1].neigh[j];

 atomsp[num-1]=atoms0[num-1];

 if (i%(natoms/10)==0)

 {

 cout << "=";

 cout.flush();

 }

 }

 cout << endl;

 }

 nums[0]='0';

 nums[1]='1';

 nums[2]='2';

 nums[3]='3';

 nums[4]='4';

 nums[5]='5';

 nums[6]='6';

 nums[7]='7';

 nums[8]='8';

 nums[9]='9';

 ncheck = 1;

 Data * data = new Data[dsteps];

 ofstream logout("log.txt");

 avcount=0;

 for (int j=1;j<=nlog;j++) //read from log.lammps files

 {

 for (int n=0;n<5;n++)

 avdata[n]=0;

 logf << "log" << j << ".lammps";

 filel = logf.str();

 logf.seekp(ios_base::beg);

 ifstream login(filel.c_str());

 cout << filel << endl;

 while(1)

 {

 login.getline(&buf[0],1024);

 if (login.eof()==true)

 break;

 for (int k=0;k<10;k++)

 {

 for (int p=0;p<10;p++)

 {

 if (buf[7]==nums[k] && buf[20]==nums[p])

 {

 line.str(string(buf));

 lhold=line.str();

 142

 logout << lhold << endl;

 line.seekp(ios_base::beg);

 line >> count >> c >> tempdata[0] >> tempdata[1]

>> tempdata[2] >> tempdata[3] >> tempdata[4] >> temperature;

 line.seekg(ios_base::beg);

 if (c>avcount)

 {

 check = (100*(count-(c-1)*delta))/delta;

 if (check > 80)

 {

 for (int n=0;n<5;n++)

 avdata[n]+=tempdata[n];

 }

 if (check == 100)

 {

 for (int n=0;n<5;n++)

 avdata[n]=avdata[n]/20;

 data[c-1].set(avdata);

 data[c-1].strain(amax,amin);

 for (int n=0;n<5;n++)

 avdata[n]=0;

 avcount++;

 }

 }

 }

 }

 }

 }

 login.close();

 }

 logout.close();

 ofstream lout("data.txt");

 lout << " c disp(A) strain force1(uN) force2(uN)";

 lout << " stress1(GPa) stress2(GPa) a1(A) a2(A) pe(eV)" << endl;

 int * clistt = new int[30000];

 int * clistb = new int[30000];

 Atom * atoms1 = new Atom[natoms];

 for (int g=0;g<=max;g+=delta) //For all timesteps

 {

 if (g!=50)

 {

 for (int i=0;i<natoms;i++)

 atoms1[i].clear();

 c = g/delta;

 143

 file2 << name <<g;

 filen = file2.str();

 file2.seekp(ios_base::beg);

 file3 << "slp." << g;

 files = file3.str();

 file3.seekp(ios_base::beg);

 file4 << "islp." <<g;

 filei = file4.str();

 file4.seekp(ios_base::beg);

 file5 << "coor." << g;

 filec = file5.str();

 file5.seekp(ios_base::beg);

 file6 << "ang." << g;

 filea = file6.str();

 file6.seekp(ios_base::beg);

 cout << filen << " " << files << " " << filei << " " << filec << " " << filea << endl;

 ifstream fin(filen.c_str());

 ofstream sout(files.c_str());

 ofstream isout(filei.c_str());

 ofstream coorout(filec.c_str());

 ofstream angout(filea.c_str());

 //copy through headers

 for (int y=1;y<=8;y++)

 {

 fin.getline(&(buf[0]),1024);

 temp1 = string(buf);

 sout << temp1 << endl;

 isout << temp1 << endl;

 coorout << temp1 << endl;

 angout << temp1 << endl;

 }

 fin.getline(&(buf[0]),1024);

 sout << "ITEM: ATOMS id xslip yslip zslip slipmag" << endl;

 isout << "ITEM: ATOMS id xislp yislp zislp islpmag" << endl;

 coorout << "ITEM: ATOMS id coord" << endl;

 angout << "ITEM: ATOMS id ang" << endl;

 //set up for reading timestep data

 ccountt = 0;

 ccountb = 0;

 centert.set(0,0,0);

 centerb.set(0,0,0);

 //Read timestep data

 for (int i=0;i<natoms;i++)

 {

 fin >> num >> type >> x[0] >> x[1] >> x[2];

 atoms1[num-1].set(num,type,x);

 if (c>0)

 {

 144

 if ((data[c-1].p[0]-x[1])<cutoff2)

 {

 centert = centert+atoms1[num-1].pos;

 clistt[ccountt]=num-1;

 ccountt++;

 }

 if ((x[1]-data[c-1].p[1])<cutoff2)

 {

 centerb = centerb+atoms1[num-1].pos;

 clistb[ccountb]=num-1;

 ccountb++;

 }

 }

 }

 cout << ccountt << " " << ccountb << endl;

 fin.close();

 for (int i=0;i<natoms;i++)

 {

 for (int j=0;j<atomsp[i].nneighs;j++) //for all nearest

neighbors

 {

 atoms1[i].check(atoms1[atomsp[i].neigh[j]-1],cutoff1);

 for (int k=0;k<atomsp[atomsp[i].neigh[j]-1].nneighs;k++)

//for all nearest neighbors of a nearest neighbor

 {

 atoms1[i].check(atoms1[atomsp[atomsp[i].neigh[j]-1].neigh[k]-

1],cutoff1);

 for (int l=0;l<atomsp[atomsp[atomsp[i].neigh[j]-1].neigh[k]-

1].nneighs;l++) //for all nneighbors of a nneighbor of a nneighbor.

 {

 atoms1[i].check(atoms1[atomsp[atomsp[atomsp[i].neigh[j]-

1].neigh[k]-1].neigh[l]-1],cutoff1);

 }

 }

 }

 }

 //Slip vector

 for (int i=0;i<natoms;i++)

 {

 coorout << i+1 << " " << atoms1[i].nneighs << endl;

 slip.set(0,0,0);

 islip.set(0,0,0);

 for (int k=0;k<atoms0[i].nneighs;k++)

 slip = slip + (atoms1[atoms0[i].neigh[k]-1]-atoms1[i])-

(atoms0[atoms0[i].neigh[k]-1]-atoms0[i]);

 sout << i+1 << " " << slip << " " << slip.mag << endl;

 for (int k=0;k<atomsp[i].nneighs;k++)

 islip = islip + (atoms1[atomsp[i].neigh[k]-1]-atoms1[i])-

(atomsp[atomsp[i].neigh[k]-1]-atomsp[i]);

 isout << i+1 << " " << islip << " " << islip.mag << endl;

 }

 145

 sout.close();

 isout.close();

 coorout.close();

 //angle calculation and reset atomsp

 for (int i=0;i<natoms;i++)

 {

 atomsp[i]=atoms1[i];

 angular = 0;

 angcount = 0;

 for (int k=0;k<atoms1[i].nneighs;k++)

 {

 bond1 = atoms1[atoms1[i].neigh[k]-1]-atoms1[i];

 for (int j=0;j<k;j++)

 {

 bond2 = atoms1[atoms1[i].neigh[j]-1]-atoms1[i];

 cosang = dot(bond1,bond2)/(bond1.mag*bond2.mag);

 angular += (cosang+(1.0/3.0))*(cosang+(1.0/3.0));

 angcount++;

 }

 }

 if (angcount==0)

 angular = 0;

 else

 angular = angular/angcount;

 angout << i+1 << " " << angular << endl;

 }

 angout.close();

 //contact diameter

 hold1 = 0;

 hold2 = 0;

 hold3 = 0;

 if (ccountt > 0)

 {

 centert=centert/ccountt;

 hold3 = 0;

 for (int p=0;p<ccountt;p++)

 {

 hold1 = atoms1[clistt[p]].pos.show(0)-centert.show(0);

 hold2 = atoms1[clistt[p]].pos.show(2)-centert.show(2);

 hold3 += hold1*hold1+hold2*hold2;

 }

 data[c-1].r[0] = sqrt(2.0*hold3/ccountt);

 }

 if (ccountb > 0)

 {

 centerb=centerb/ccountb;

 hold3 = 0;

 for (int p=0;p<ccountb;p++)

 {

 hold1 = atoms1[clistb[p]].pos.show(0)-centerb.show(0);

 hold2 = atoms1[clistb[p]].pos.show(2)-centerb.show(2);

 hold3 += hold1*hold1+hold2*hold2;

 }

 146

 data[c-1].r[1] = sqrt(2.0*hold3/ccountb);

 }

 if (c>0)

 {

 data[c-1].stress();

 lout << setw(4) << c << data[c-1] << endl;

 }

 }

 }

 lout.close();

 delete [] atoms1;

 delete [] clistt;

 delete [] clistb;

 delete [] atomsp;

 delete [] atoms0;

 delete [] data;

 return 0;

}

 147

Appendix Two Oxide Potentials

This appendix contains the code developed for the implementation of the Jiang

and Brown, and the Watanabe et al. Si-SiO2 atomistic potentials. The Jiang and Brown

potential is named as the swbks potential for being a combination of the Stillinger-

Weber and the BKS potentials, while the Watanabe potential is the named the

sw_wnfho potential. To use these potentials, the .h and .cpp files need to be placed in

the src folder of the LAMMPS program and LAMMPS needs to be rebuilt.

The Jiang and Brown potential is then ran in LAMMPS using the lines

pair_style swbks 10.0

pair_coeff * * /folder-location/SiO.swbks Si O

The Watanabe potential can be ran using

pair_style sw/wfnho

pair_coeff * * /folder-location/SiO.sw_wfnho Si(a) O

As can be seen, the coefficients of the parameters for both potentials are contained in

separate folders. These parameter files are also included here.

 148

"pair_sw_bks.h"

/* --

 LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator

 http://lammps.sandia.gov, Sandia National Laboratories

 Steve Plimpton, sjplimp@sandia.gov

 Copyright (2003) Sandia Corporation. Under the terms of Contract

 DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains

 certain rights in this software. This software is distributed under

 the GNU General Public License.

 See the README file in the top-level LAMMPS directory.

--- */

#ifdef PAIR_CLASS

PairStyle(swbks,PairSWBKS)

#else

#ifndef LMP_PAIR_SW_BKS_H

#define LMP_PAIR_SW_BKS_H

#include "pair.h"

namespace LAMMPS_NS {

class PairSWBKS : public Pair {

public:

 PairSWBKS(class LAMMPS *);

 PairSWBKS(class LAMMPS *);

 ~PairSWBKS();

 void compute(int, int);

 void settings(int, char **);

 void coeff(int, char **);

 double init_one(int, int);

 void init_style();

private:

 struct Param {

 double epsilon,sigma;

 double littlea,lambda,gamma,costheta;

 double biga,bigb;

 double powerp,powerq;

 double tol;

 double cut,cutsq;

 double sigma_gamma,lambda_epsilon,lambda_epsilon2;

 double c1,c2,c3,c4,c5,c6;

 int ielement,jelement,kelement;

 };

 double cut_lj_global;

 double **cut_lj,**cut_ljsq;

 149

 double cut_coul,cut_coulsq;

 double **a,**rho,**c;

 double **rhoinv,**buck1,**buck2,**offset;

 double g_ewald;

 double cutmax; // max cutoff for all elements

 int nelements; // # of unique elements

 char **elements; // names of unique elements

 int **swcheck; // identifies which element is modeled with SW

 int *map,*qset; // mapping from atom types to elements and charge param check

 Param swparams; // parameter set for SW potential

 void allocate();

 void read_file(char *);

 void setup();

 double gij(double, double);

 void twobody(Param *, double, double &, int, double &);

 void threebody(Param *, double, double, double, double, double, double *, double *,double *,

double *, int, double &);

};

}

#endif

#endif

 150

"pair_sw_bks.cpp"

/* --

 LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator

 http://lammps.sandia.gov, Sandia National Laboratories

 Steve Plimpton, sjplimp@sandia.gov

 Copyright (2003) Sandia Corporation. Under the terms of Contract

 DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains

 certain rights in this software. This software is distributed under

 the GNU General Public License.

 See the README file in the top-level LAMMPS directory.

--- */

/* --

 Spliced by Lucas Hale from pair_sw contributed by author: Aidan Thompson (SNL)

 and pair_buck_coul_long

--- */

#include "math.h"

#include "stdio.h"

#include "stdlib.h"

#include "string.h"

#include "pair_sw_bks.h"

#include "atom.h"

#include "kspace.h"

#include "neighbor.h"

#include "neigh_request.h"

#include "force.h"

#include "comm.h"

#include "memory.h"

#include "neighbor.h"

#include "neigh_list.h"

#include "memory.h"

#include "error.h"

using namespace LAMMPS_NS;

#define MAXLINE 1024

#define DELTA 4

#define MIN(a,b) ((a) < (b) ? (a) : (b))

#define MAX(a,b) ((a) > (b) ? (a) : (b))

#define EWALD_F 1.12837917

#define EWALD_P 0.3275911

#define A1 0.254829592

#define A2 -0.284496736

#define A3 1.421413741

#define A4 -1.453152027

#define A5 1.061405429

#define PIval 3.14159265359

 151

/* -- */

PairSWBKS::PairSWBKS(LAMMPS *lmp) : Pair(lmp)

{

 single_enable = 0;

 one_coeff = 1;

 nelements = 0;

 elements = NULL;

 params = NULL;

}

/* --

 check if allocated, since class can be destructed when incomplete

--- */

PairSWBKS::~PairSWBKS()

{

 if (elements)

 for (int i = 0; i < nelements; i++) delete [] elements[i];

 delete [] elements;

 // memory->sfree(swparams);

 if (allocated) {

 memory->destroy_2d_int_array(setflag);

 memory->destroy_2d_int_array(swcheck);

 memory->destroy_2d_double_array(cutsq);

 memory->destroy_2d_double_array(cut_lj);

 memory->destroy_2d_double_array(cut_ljsq);

 memory->destroy_2d_double_array(a);

 memory->destroy_2d_double_array(rho);

 memory->destroy_2d_double_array(c);

 memory->destroy_2d_double_array(rhoinv);

 memory->destroy_2d_double_array(buck1);

 memory->destroy_2d_double_array(buck2);

 memory->destroy_2d_double_array(offset);

 delete [] map;

 delete [] qset;

 }

}

/* -- */

void PairSWBKS::compute(int eflag, int vflag)

{

 int i,j,k,ii,jj,kk,inum,jnum,jnumm1,itag,jtag;

 int itype,jtype,ktype,swparam,posneg;

 double xtmp,ytmp,ztmp,delx,dely,delz,evdwl,ecoul,fpair,gsoft;

 double rsq,rsq1,rsq2,r,r2inv,r6inv,forcecoul,forcebuck,factor_coul,factor_lj;

 double delr1[3],delr2[3],fj[3],fk[3],grij,expm2,prefactor,t,erfc,rexp;

 int *ilist,*jlist,*numneigh,**firstneigh;

 evdwl = ecoul = 0.0;

 152

 if (eflag || vflag) ev_setup(eflag,vflag);

 else evflag = vflag_fdotr = 0;

 double **x = atom->x;

 double **f = atom->f;

 int *tag = atom->tag;

 int *type = atom->type;

 int nlocal = atom->nlocal;

 int nall = nlocal + atom->nghost;

 double *special_coul = force->special_coul;

 double *special_lj = force->special_lj;

 int newton_pair = force->newton_pair;

 double qqrd2e = force->qqrd2e;

 inum = list->inum;

 ilist = list->ilist;

 numneigh = list->numneigh;

 firstneigh = list->firstneigh;

 // Calculate the effective charge on the atoms

 for (ii=0; ii< inum; ii++) {

 i = ilsit[ii];

 itype = map[type[i]];

 xtmp = x[i][0];

 ytmp = x[i][1];

 ztmp = x[i][2];

 jlist = firstneigh[i];

 jnum = numneigh[i];

 qe[i] = 0.0;

 if (qnaught[itype] > 0) posneg = 1;

 else if (qnaught[itype] < 0) posneg = -1;

 else posneg = 0;

 for (jj = 0; jj < jnum; jj++) {

 j = jlist[jj];

 jtype = type[j];

 if (itype!=jtype) {

 delx = xtmp - x[j][0];

 dely = ytmp - x[j][1];

 delz = ztmp - x[j][2];

 rsq = delx*delx + dely*dely + delz*delz;

 r = sqrt(rsq);

 if (r <= ro) qe[i] += posneg*qo;

 else if (r <= rs) qe[i] += posneg*qo*(1+cos(PIval*(r-ro)/(rs-ro)))/2;

 }//end if different

 }//end for j

 }//end for i

 // calculate the energies and forces

 for (ii = 0; ii < inum; ii++) {

 153

 i = ilist[ii];

 itag = tag[i];

 qtmp = qe[i];

 itype = map[type[i]];

 jlist = firstneigh[i];

 jnum = numneigh[i];

 xtmp = x[i][0];

 ytmp = x[i][1];

 ztmp = x[i][2];

 qdel = posneg*(qe[i] - qnaught[itype]);

 if (qdel > 0)

 eion = eo*exp(-1/qdel);

 //ADD eion ENERGY !!

 for (jj = 0; jj < jnum; jj++) { //pair potentials

 j = jlist[jj];

 jtag = tag[j];

 jtype = map[type[j]];

 if (swcheck[itype,jtype]) // if atom pair is Stillinger-Weber type bonding

 {

 if (itag > jtag) {

 if ((itag+jtag) % 2 == 0) continue;

 } else if (itag < jtag) {

 if ((itag+jtag) % 2 == 1) continue;

 } else {

 if (x[j][2] < ztmp) continue;

 if (x[j][2] == ztmp && x[j][1] < ytmp) continue;

 if (x[j][2] == ztmp && x[j][1] == ytmp && x[j][0] < xtmp)

continue;

 }

 delx = xtmp - x[j][0];

 dely = ytmp - x[j][1];

 delz = ztmp - x[j][2];

 rsq = delx*delx + dely*dely + delz*delz;

 if (rsq > swparams.cutsq) continue;

 twobody(&swparams,rsq,fpair,eflag,evdwl);

 fpair = fpair*gij(qe[i],qe[j]);

 evdwl = evdwl*gij(qe[i],qe[j]);

 f[i][0] += delx*fpair;

 f[i][1] += dely*fpair;

 f[i][2] += delz*fpair;

 f[j][0] -= delx*fpair;

 f[j][1] -= dely*fpair;

 f[j][2] -= delz*fpair;

 if (evflag)

ev_tally(i,j,nlocal,newton_pair,evdwl,0.0,fpair,delx,dely,delz);

 } else { // if not Stillinger-Weber, must be BKS

(buck_coul_long)

 154

 if (j < nall) factor_coul = factor_lj = 1.0;

 else {

 factor_coul = special_coul[j/nall];

 factor_lj = special_lj[j/nall];

 j %= nall;

 }

 delx = xtmp - x[j][0];

 dely = ytmp - x[j][1];

 delz = ztmp - x[j][2];

 rsq = delx*delx + dely*dely + delz*delz;

 if (rsq < cutsq[itype][jtype]) {

 r2inv = 1.0/rsq;

 if (rsq < cut_coulsq) {

 r = sqrt(rsq);

 grij = g_ewald * r;

 expm2 = exp(-grij*grij);

 t = 1.0 / (1.0 + EWALD_P*grij);

 erfc = t * (A1+t*(A2+t*(A3+t*(A4+t*A5)))) *

expm2;

 prefactor = qqrd2e * qtmp*qe[j]/r;

 forcecoul = prefactor * (erfc +

EWALD_F*grij*expm2);

 if (factor_coul < 1.0) forcecoul -= (1.0-

factor_coul)*prefactor;

 } else forcecoul = 0.0;

 if (rsq < cut_ljsq[itype][jtype]) {

 r6inv = r2inv*r2inv*r2inv;

 r = sqrt(rsq);

 rexp = exp(-r*rhoinv[itype][jtype]);

 forcebuck = buck1[itype][jtype]*r*rexp -

buck2[itype][jtype]*r6inv;

 } else forcebuck = 0.0;

 fpair = (forcecoul + factor_lj*forcebuck) * r2inv;

 f[i][0] += delx*fpair;

 f[i][1] += dely*fpair;

 f[i][2] += delz*fpair;

 if (newton_pair || j < nlocal) {

 f[j][0] -= delx*fpair;

 f[j][1] -= dely*fpair;

 f[j][2] -= delz*fpair;

 }

 if (eflag) {

 if (rsq < cut_coulsq) {

 ecoul = prefactor*erfc;

 if (factor_coul < 1.0) ecoul -= (1.0-

factor_coul)*prefactor;

 } else ecoul = 0.0;

 if (rsq < cut_ljsq[itype][jtype]) {

 155

 evdwl = a[itype][jtype]*rexp -

c[itype][jtype]*r6inv - offset[itype][jtype];

 evdwl *= factor_lj;

 } else evdwl = 0.0;

 }

 if (evflag)

ev_tally(i,j,nlocal,newton_pair,evdwl,ecoul,fpair,delx,dely,delz);

 }//end if

 }//end swcheck=false

 }//end for j

 jnumm1 = jnum - 1;

 for (jj = 0; jj < jnumm1; jj++) { //Start 3-body terms

 j = jlist[jj];

 jtype = map[type[j]];

 if (!swcheck[itype,jtype]) continue;

 delr1[0] = x[j][0] - xtmp;

 delr1[1] = x[j][1] - ytmp;

 delr1[2] = x[j][2] - ztmp;

 rsq1 = delr1[0]*delr1[0] + delr1[1]*delr1[1] + delr1[2]*delr1[2];

 if (rsq1 > swparams.cutsq) continue;

 for (kk = jj+1; kk < jnum; kk++) {

 k = jlist[kk];

 ktype = map[type[k]];

 if (!swcheck[itype,ktype]) continue;

 delr2[0] = x[k][0] - xtmp;

 delr2[1] = x[k][1] - ytmp;

 delr2[2] = x[k][2] - ztmp;

 rsq2 = delr2[0]*delr2[0] + delr2[1]*delr2[1] + delr2[2]*delr2[2];

 if (rsq2 > params.cutsq) continue;

 threebody(¶ms,rsq1,rsq2,delr1,delr2,fj,fk,eflag,evdwl);

 gsoft = gij(qe[i],qe[j])*gij(qe[i],qe[k]);

 for (int y=0;y<3;y++) {

 fj[y] = fj[y] * gsoft;

 fk[y] = fk[y] * gsoft;

 }

 evdwl = evdwl * gsoft;

 f[i][0] -= fj[0] + fk[0];

 f[i][1] -= fj[1] + fk[1];

 f[i][2] -= fj[2] + fk[2];

 f[j][0] += fj[0];

 f[j][1] += fj[1];

 f[j][2] += fj[2];

 f[k][0] += fk[0];

 f[k][1] += fk[1];

 f[k][2] += fk[2];

 if (evflag) ev_tally3(i,j,k,evdwl,0.0,fj,fk,delr1,delr2);

 156

 }//end for k

 }//end for j

 }//end for i

 if (vflag_fdotr) virial_compute();

}

/* --

 Bond softening function

--- */

double PairSWBKS::gij(double qi, double qj)

{

 double hold1,hold2;

 if ((qi+qj) < qs) {

 hold1 = exp(1/qs)

 hold2 = exp(1/(qe[i]+qe[j]-qs));

 return hold1*hold2;

 }

 else

 return 0;

}

/* --

 allocate arrays and map

--- */

void PairSWBKS::allocate()

{

 allocated = 1;

 int n = atom->ntypes;

 map = new int[n+1];

 qset = new int[n+1];

 setflag = memory->create_2d_int_array(n+1,n+1,"pair:setflag");

 for (int i = 1; i <= n; i++)

 for (int j = i; j <= n; j++)

 setflag[i][j] = 0;

 cutsq = memory->create_2d_double_array(n+1,n+1,"pair:cutsq");

 cut_lj = memory->create_2d_double_array(n+1,n+1,"pair:cut_lj");

 cut_ljsq = memory->create_2d_double_array(n+1,n+1,"pair:cut_ljsq");

 a = memory->create_2d_double_array(n+1,n+1,"pair:a");

 rho = memory->create_2d_double_array(n+1,n+1,"pair:rho");

 c = memory->create_2d_double_array(n+1,n+1,"pair:c");

 rhoinv = memory->create_2d_double_array(n+1,n+1,"pair:rhoinv");

 buck1 = memory->create_2d_double_array(n+1,n+1,"pair:buck1");

 buck2 = memory->create_2d_double_array(n+1,n+1,"pair:buck2");

 offset = memory->create_2d_double_array(n+1,n+1,"pair:offset");

}

/* --

 157

 global settings

--- */

void PairSWBKS::settings(int narg, char **arg)

{

 if (narg < 1 || narg > 2) error->all("Illegal pair_style command");

 cut_lj_global = force->numeric(arg[0]);

 if (narg == 1) cut_coul = cut_lj_global;

 else cut_coul = force->numeric(arg[1]);

 // reset cutoffs that have been explicitly set

 if (allocated) {

 int i,j;

 for (i = 1; i <= atom->ntypes; i++)

 for (j = i+1; j <= atom->ntypes; j++)

 if (setflag[i][j]) cut_lj[i][j] = cut_lj_global;

 }

}

/* --

 set coeffs for one or more type pairs

--- */

void PairSW::coeff(int narg, char **arg)

{

 int i,j,n;

 if (!allocated) allocate();

 if (narg != 3 + atom->ntypes)

 error->all("Incorrect args for pair coefficients");

 // insure I,J args are * *

 if (strcmp(arg[0],"*") != 0 || strcmp(arg[1],"*") != 0)

 error->all("Incorrect args for pair coefficients");

 // read args that map atom types to elements in potential file

 // map[i] = which element the Ith atom type is, -1 if NULL

 // nelements = # of unique elements

 // elements = list of element names

 if (elements) {

 for (i = 0; i < nelements; i++) delete [] elements[i];

 delete [] elements;

 }

 elements = new char*[atom->ntypes];

 for (i = 0; i < atom->ntypes; i++) elements[i] = NULL;

 nelements = 0;

 for (i = 3; i < narg; i++) {

 for (j = 0; j < nelements; j++)

 if (strcmp(arg[i],elements[j]) == 0) break;

 158

 map[i-2] = j;

 if (j == nelements) {

 n = strlen(arg[i]) + 1;

 elements[j] = new char[n];

 strcpy(elements[j],arg[i]);

 nelements++;

 }

 }

 // read potential file and initialize potential parameters

 read_file(arg[2]);

 setup();

 // clear setflag since coeff() called once with I,J = * *

 n = atom->ntypes;

 for (int i = 1; i <= n; i++)

 for (int j = i; j <= n; j++)

 setflag[i][j] = 0;

 // set setflag i,j for type pairs where both are mapped to elements

 int count = 0;

 for (int i = 1; i <= n; i++)

 for (int j = i; j <= n; j++)

 if (map[i] >= 0 && map[j] >= 0) {

 setflag[i][j] = 1;

 count++;

 }

 if (count == 0) error->all("Incorrect args for pair coefficients");

}

/* --

 init specific to this pair style

--- */

void PairSWBKS::init_style()

{

 if (atom->tag_enable == 0)

 error->all("Pair style Stillinger-Weber requires atom IDs");

 if (force->newton_pair == 0)

 error->all("Pair style Stillinger-Weber requires newton pair on");

 cut_coulsq = cut_coul * cut_coul;

 // insure use of KSpace long-range solver, set g_ewald for buck/coul/long

 if (force->kspace == NULL)

 error->all("Pair style is incompatible with KSpace style");

 g_ewald = force->kspace->g_ewald;

 // need a full neighbor list

 int irequest = neighbor->request(this);

 neighbor->requests[irequest]->half = 0;

 159

 neighbor->requests[irequest]->full = 1;

}

/* --

 init for one type pair i,j and corresponding j,i

--- */

double PairSW::init_one(int i, int j)

{

 if (setflag[i][j] == 0) error->all("All pair coeffs are not set");

 double cuta = MAX(cut_lj[i][j],cut_coul);

 double cut = MAX(cuta,cutmax);

 cut_ljsq[i][j] = cut_lj[i][j] * cut_lj[i][j];

 rhoinv[i][j] = 1.0/rho[i][j];

 buck1[i][j] = a[i][j]/rho[i][j];

 buck2[i][j] = 6.0*c[i][j];

 if (offset_flag) {

 double rexp = exp(-cut_lj[i][j]/rho[i][j]);

 offset[i][j] = a[i][j]*rexp - c[i][j]/pow(cut_lj[i][j],6.0);

 } else offset[i][j] = 0.0;

 cut_ljsq[j][i] = cut_ljsq[i][j];

 a[j][i] = a[i][j];

 c[j][i] = c[i][j];

 rhoinv[j][i] = rhoinv[i][j];

 buck1[j][i] = buck1[i][j];

 buck2[j][i] = buck2[i][j];

 offset[j][i] = offset[i][j];

 swcheck[j][i] = swcheck[i][j];

 return cut;

}

/* -- */

void PairSW::read_file(char *file)

{

 int params_per_line = 13;

 int param_type=0;

 char **words = new char*[params_per_line+1];

 int hold,n,nwords,ielement,jelement,swset,mixset;

 char line[MAXLINE],*ptr,look;

 int eof = 0;

 // open file on proc 0

 n = atom->ntypes;

 for (int i = 1; i <= n; i++) {

 qset[n] = 0;

 for (int j = i; j <= n; j++)

 setflag[i][j] = 0;

 }

 swset = mixset = 0;

 160

 FILE *fp;

 if (comm->me == 0) {

 fp = fopen(file,"r");

 if (fp == NULL) {

 char str[128];

 sprintf(str,"Cannot open Stillinger-Weber potential file %s",file);

 error->one(str);

 }

 }

 // read each set of params from potential file

 // one set of params can span multiple lines

 while (1) {

 param_type=0;

 if (comm->me == 0) {

 ptr = fgets(line,MAXLINE,fp);

 if (ptr == NULL) {

 eof = 1;

 fclose(fp);

 } else n = strlen(line) + 1;

 }

 MPI_Bcast(&eof,1,MPI_INT,0,world);

 if (eof) break;

 MPI_Bcast(&n,1,MPI_INT,0,world);

 MPI_Bcast(line,n,MPI_CHAR,0,world);

 // strip comment, skip line if blank

 if (ptr = strchr(line,'#')) *ptr = '\0';

 nwords = atom->count_words(line);

 if (nwords == 0) continue;

 // determine which parameter type line consists of

 if (ptr=strchr(line,'S')) {

 look = *(ptr+1);

 if (look == 'W') {

 params_per_line = 13;

 param_type = 1;

 }

 }

 if (ptr=strchr(line,'Q')) {

 if (param_type) error->all("Incorrect format in SWBKS potential file");

 params_per_line = 3;

 param_type = 2;

 }

 if (ptr=strchr(line,'M')) {

 look = *(ptr+1);

 if (look == 'I') {

 look = *(ptr+2);

 if (look == 'X') {

 if (param_type) error->all("Incorrect format in SWBKS

potential file");

 params_per_line = 5;

 161

 param_type = 3;

 }

 }

 }

 if (param_type == 0) {

 params_per_line = 5;

 param_type = 4;

 }

 // concatenate additional lines until have params_per_line words

 while (nwords < params_per_line) {

 n = strlen(line);

 if (comm->me == 0) {

 ptr = fgets(&line[n],MAXLINE-n,fp);

 if (ptr == NULL) {

 eof = 1;

 fclose(fp);

 } else n = strlen(line) + 1;

 }

 MPI_Bcast(&eof,1,MPI_INT,0,world);

 if (eof) break;

 MPI_Bcast(&n,1,MPI_INT,0,world);

 MPI_Bcast(line,n,MPI_CHAR,0,world);

 if (ptr = strchr(line,'#')) *ptr = '\0';

 nwords = atom->count_words(line);

 }

 if (nwords != params_per_line) error->all("Incorrect format in SWBKS potential file");

 // words = ptrs to all words in line

 nwords = 0;

 words[nwords++] = strtok(line," \t\n\r\f");

 while (words[nwords++] = strtok(NULL," \t\n\r\f")) continue;

 // assign parameters according to their line style

 //Stillinger-Weber settings

 if (param_type == 1) {

 cout << "Stillinger-Weber line" << endl;

 if (swset == 1) error->all("Duplicate SW parameters not allowed");

 swset = 1;

 for (ielement = 0; ielement < nelements; ielement++)

 if (strcmp(words[1],elements[ielement]) == 0) break;

 if (ielement == nelements) error->all("Atom type for SW parameters not

consistent");

 swparams.element = ielement;

 swparams.epsilon = atof(words[2]);

 swparams.sigma = atof(words[3]);

 swparams.littlea = atof(words[4]);

 swparams.lambda = atof(words[5]);

 swparams.gamma = atof(words[6]);

 swparams.costheta = atof(words[7]);

 162

 swparams.biga = atof(words[8]);

 swparams.bigb = atof(words[9]);

 swparams.powerp = atof(words[10]);

 swparams.powerq = atof(words[11]);

 swparams.tol = atof(words[12]);

 if (swparams.epsilon < 0.0 || swparams.sigma < 0.0 ||

 swparams.littlea < 0.0 || swparams.lambda < 0.0 ||

 swparams.gamma < 0.0 || swparams.biga < 0.0 ||

 swparams.bigb < 0.0 || swparams.powerp < 0.0 ||

 swparams.powerq < 0.0 || swparams.tol < 0.0)

 error->all("Illegal Stillinger-Weber parameter");

 //Ionic charge settings

 } else if (param_type == 2) {

 for (ielement = 0; ielement < nelements; ielement++)

 if (strcmp(words[1],elements[ielement]) == 0) break;

 if (ielement == nelements) error->all("Atom type for charge parameters not

consistent");

 if (qset[ielement+1] == 1) error->all("Duplicate charge parameters found");

 q[ielement] = atof(words[2]);

 qset[ielement+1]=1;

 //Jiang and Brown hybrid settings

 } else if (param_type == 3) {

 if (mixset == 1) error->all("Duplicate SWBKS parameters found");

 rs = atof(words[1]);

 ro = atof(words[2]);

 qs = atof(words[3]);

 eo = atof(words[4]);

 mixset = 1;

 //buck/coul/long (BKS) settings

 } else if (param_type == 4) {

 for (ielement = 0; ielement < nelements; ielement++)

 if (strcmp(words[0],elements[ielement]) == 0) break;

 if (ielement == nelements) error->all("Atom type for buck/coul/long

parameters not consistent");

 for (jelement = 0; jelement < nelements; jelement++)

 if (strcmp(words[1],elements[jelement]) == 0) break;

 if (jelement == nelements) error->all("Atom type for buck/coul/long

parameters not consistent");

 a[ielement][jelement] = atof(words[2]);

 rho[ielement][jelement] = atof(words[3]);

 if (rho[ielement][jelement] <= 0) error->all("Incorrect args for buck/coul/long

pair coefficients");

 c[ielement][jelement] = atof(words[4]);

 cut_lj[ielement][jelement] = cut_lj_global;

 if (setflag[ielement+1][jelement+1] == 1) error->all("Duplicate buck/coul/long

parameters found");

 setflag[ielement+1][jelement+1] = 1;

 cout << a[ielement][jelement] << " " << rho[ielement][jelement] << " " <<

c[ielement][jelement] << endl;

 163

 }

 }

 delete [] words;

}

/* -- */

void PairSW::setup()

{

 int i,j,k,m,n;

 double rtmp;

 // compute parameter values derived from inputs

 // set cutsq using shortcut to reduce neighbor list for accelerated

 // calculations. cut must remain unchanged as it is a potential parameter

 // (cut = a*sigma)

 swparams.cut = swparams.sigma*swparams.littlea;

 rtmp = swparams.cut;

 if (swparams.tol > 0.0) {

 if (swparams.tol > 0.01) swparams.tol = 0.01;

 if (swparams.gamma < 1.0)

 rtmp = rtmp +

 swparams.gamma * swparams.sigma / log(swparams.tol);

 else rtmp = rtmp +

 swparams.sigma / log(swparams.tol);

 }

 swparams.cutsq = rtmp * rtmp;

 swparams.sigma_gamma = swparams.sigma*swparams.gamma;

 swparams.lambda_epsilon = swparams.lambda*swparams.epsilon;

 swparams.lambda_epsilon2 = 2.0*swparams.lambda*swparams.epsilon;

 swparams.c1 = swparams.biga*swparams.epsilon *

 swparams.powerp*swparams.bigb *

 pow(swparams.sigma,swparams.powerp);

 swparams.c2 = swparams.biga*swparams.epsilon*swparams.powerq *

 pow(swparams.sigma,swparams.powerq);

 swparams.c3 = swparams.biga*swparams.epsilon*swparams.bigb *

 pow(swparams.sigma,swparams.powerp+1.0);

 swparams.c4 = swparams.biga*swparams.epsilon *

 pow(swparams.sigma,swparams.powerq+1.0);

 swparams.c5 = swparams.biga*swparams.epsilon*swparams.bigb *

 pow(swparams.sigma,swparams.powerp);

 swparams.c6 = swparams.biga*swparams.epsilon *

 pow(swparams.sigma,swparams.powerq);

 // set cutmax to max of all params

 cutmax = sqrt(swparams.cutsq);

}

 164

/* -- */

void PairSW::twobody(Param *param, double rsq, double &fforce,

 int eflag, double &eng)

{

 double r,rinvsq,rp,rq,rainv,rainvsq,expsrainv;

 r = sqrt(rsq);

 rinvsq = 1.0/rsq;

 rp = pow(r,-param->powerp);

 rq = pow(r,-param->powerq);

 rainv = 1.0 / (r - param->cut);

 rainvsq = rainv*rainv*r;

 expsrainv = exp(param->sigma * rainv);

 fforce = (param->c1*rp - param->c2*rq +

 (param->c3*rp -param->c4*rq) * rainvsq) * expsrainv * rinvsq;

 if (eflag) eng = (param->c5*rp - param->c6*rq) * expsrainv;

}

/* -- */

void PairSW::threebody(Param *params, double rsq1, double rsq2,

 double *delr1, double *delr2,

 double *fj, double *fk, int eflag, double &eng)

{

 double r1,rinvsq1,rainv1,gsrainv1,gsrainvsq1,expgsrainv1;

 double r2,rinvsq2,rainv2,gsrainv2,gsrainvsq2,expgsrainv2;

 double rinv12,cs,delcs,delcssq,facexp,facrad,frad1,frad2;

 double facang,facang12,csfacang,csfac1,csfac2;

 r1 = sqrt(rsq1);

 rinvsq1 = 1.0/rsq1;

 rainv1 = 1.0/(r1 - params->cut);

 gsrainv1 = params->sigma_gamma * rainv1;

 gsrainvsq1 = gsrainv1*rainv1/r1;

 expgsrainv1 = exp(gsrainv1);

 r2 = sqrt(rsq2);

 rinvsq2 = 1.0/rsq2;

 rainv2 = 1.0/(r2 - params->cut);

 gsrainv2 = params->sigma_gamma * rainv2;

 gsrainvsq2 = gsrainv2*rainv2/r2;

 expgsrainv2 = exp(gsrainv2);

 rinv12 = 1.0/(r1*r2);

 cs = (delr1[0]*delr2[0] + delr1[1]*delr2[1] + delr1[2]*delr2[2]) * rinv12;

 delcs = cs - params->costheta;

 delcssq = delcs*delcs;

 facexp = expgsrainv1*expgsrainv2;

 // facrad = sqrt(paramij->lambda_epsilon*paramik->lambda_epsilon) *

 // facexp*delcssq;

 165

 facrad = params->lambda_epsilon * facexp*delcssq;

 frad1 = facrad*gsrainvsq1;

 frad2 = facrad*gsrainvsq2;

 facang = params->lambda_epsilon2 * facexp*delcs;

 facang12 = rinv12*facang;

 csfacang = cs*facang;

 csfac1 = rinvsq1*csfacang;

 fj[0] = delr1[0]*(frad1+csfac1)-delr2[0]*facang12;

 fj[1] = delr1[1]*(frad1+csfac1)-delr2[1]*facang12;

 fj[2] = delr1[2]*(frad1+csfac1)-delr2[2]*facang12;

 csfac2 = rinvsq2*csfacang;

 fk[0] = delr2[0]*(frad2+csfac2)-delr1[0]*facang12;

 fk[1] = delr2[1]*(frad2+csfac2)-delr1[1]*facang12;

 fk[2] = delr2[2]*(frad2+csfac2)-delr1[2]*facang12;

 if (eflag) eng = facrad;

}

 166

"SiO.swbks"

Needs Stillinger-Weber parameters for 1 element, BKS (buck/coul/long)

parameters for all element pairs, ideal charges for all elements and mixing terms.

Begin Stillinger-Weber line with sw followed by the element.

Begin BKS lines with both element names.

Begin charge lines with Q followed by the element.

Begin charge mixing line with MIX.

LAMMPS reads all values in "metal" units. Note that units from papers differ

SW format: SW element epsilon(eV) sigma(A) a lambda gamma costheta0 A B p q

tol

BKS format: element1 element2 A(eV) b(1/A) c(eV*A^6)

Charge format: Q element qnaught(electron charge)

Mix format: MIX rs(A) ro(A) qs(electron charge) eo(eV)

Si Si 0 0 0

SW Si 2.1683 2.0951 1.80 21.0 1.20 -0.333333333333 7.049556277 0.6022245584 4.0

0.0 0.0

Si O 18003.7572 4.87318 133.5381

O O 1388.7730 2.76000 175.0000

Q Si 2.4

Q O -1.2

MIX 3.14265 2.51412 2.727491 58.541539891

 167

"pair_sw_wfnho.h"

/* --

 LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator

 http://lammps.sandia.gov, Sandia National Laboratories

 Steve Plimpton, sjplimp@sandia.gov

 Copyright (2003) Sandia Corporation. Under the terms of Contract

 DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains

 certain rights in this software. This software is distributed under

 the GNU General Public License.

 See the README file in the top-level LAMMPS directory.

--- */

#ifdef PAIR_CLASS

PairStyle(sw/wfnho,PairSWWFNHO)

#else

#ifndef LMP_PAIR_SW_WFNHO_H

#define LMP_PAIR_SW_WFNHO_H

#include "pair.h"

#define PIVAL 3.1415926535898

namespace LAMMPS_NS {

class PairSWWFNHO : public Pair {

 public:

 PairSWWFNHO(class LAMMPS *);

 ~PairSWWFNHO();

 void compute(int, int);

 void settings(int, char **);

 void coeff(int, char **);

 double init_one(int, int);

 void init_style();

 private:

 struct Param {

 double epsilon,sigma;

 double aij,aik,cij,lambda,gammaij,gammaik,costheta;

 double biga,bigb;

 double powerp,powerq;

 double tol;

 double cutpair,cutij,cutik,cutpairsq,cutijsq,cutiksq;

 double sigma_gammaij,sigma_gammaik,lambda_epsilon,lambda_epsilon2;

 double c1,c2,c3,c4,c5,c6;

 int ielement,jelement,kelement;

 };

 struct Softparam {

 double ma,mb,mc,md,me,bigr,bigd;

 168

 int ielement,jelement;

 };

 double cutmax; // max cutoff for all elements

 int nelements; // # of unique elements

 char **elements; // names of unique elements

 int ***elem2param; // mapping from element triplets to parameters

 int **elem2soft; // mapping from element doubles to bond softening

 int *map; // mapping from atom types to elements

 int nparams; // # of stored parameter sets

 int maxparam; // max # of parameter sets

 Param *params; // parameter set for an I-J-K interaction

 int nsofts; // # of bond softening parameter sets

 int maxsofts; // max # of softening parameter sets

 Softparam *soft; // parameter set for the bond softening

 int **softflag;

 double *coord;

 void allocate();

 void read_file(char *);

 void setup();

 void twobody(Param *, double, double &, int, double &);

 void threebody(Param *, double, double, double *, double *,

 double *, double *, int, double &);

 double gsoft(double, int, int);

};

}

#endif

#endif

 169

"pair_sw_wfnho.cpp"

/* --

 LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator

 http://lammps.sandia.gov, Sandia National Laboratories

 Steve Plimpton, sjplimp@sandia.gov

 Copyright (2003) Sandia Corporation. Under the terms of Contract

 DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains

 certain rights in this software. This software is distributed under

 the GNU General Public License.

 See the README file in the top-level LAMMPS directory.

--- */

/* --

 Contributing author: Lucas Hale

 Modified from the Stillinger-Weber potential by: Aidan Thompson (SNL)

--- */

#include "math.h"

#include "stdio.h"

#include "stdlib.h"

#include "string.h"

#include "pair_sw_wfnho.h"

#include "atom.h"

#include "neighbor.h"

#include "neigh_request.h"

#include "force.h"

#include "comm.h"

#include "memory.h"

#include "neighbor.h"

#include "neigh_list.h"

#include "memory.h"

#include "error.h"

using namespace LAMMPS_NS;

#define MAXLINE 1024

#define DELTA 4

/* -- */

PairSWWFNHO::PairSWWFNHO(LAMMPS *lmp) : Pair(lmp)

{

 single_enable = 0;

 one_coeff = 1;

 nelements = 0;

 elements = NULL;

 nparams = maxparam = 0;

 nsofts = 0;

 params = NULL;

 170

 elem2param = NULL;

 soft = NULL;

 elem2soft = NULL;

}

/* --

 check if allocated, since class can be destructed when incomplete

--- */

PairSWWFNHO::~PairSWWFNHO()

{

 if (elements)

 for (int i = 0; i < nelements; i++) delete [] elements[i];

 delete [] elements;

 memory->sfree(params);

 memory->sfree(soft);

 memory->destroy_3d_int_array(elem2param);

 if (allocated) {

 memory->destroy_2d_int_array(setflag);

 memory->destroy_2d_int_array(softflag);

 memory->destroy_2d_double_array(cutsq);

 delete [] map;

 delete [] coord;

 }

}

/* -- */

void PairSWWFNHO::compute(int eflag, int vflag)

{

 int i,j,k,ii,jj,kk,inum,jnum,jnumm1,itag,jtag;

 int itype,jtype,ktype,ijparam,ijkparam;

 double xtmp,ytmp,ztmp,delx,dely,delz,evdwl,fpair;

 double rsq,rsq1,rsq2,bigr,bigd,gij,r;

 double delr1[3],delr2[3],fj[3],fk[3];

 int *ilist,*jlist,*numneigh,**firstneigh;

 evdwl = 0.0;

 if (eflag || vflag) ev_setup(eflag,vflag);

 else evflag = vflag_fdotr = 0;

 double **x = atom->x;

 double **f = atom->f;

 int *tag = atom->tag;

 int *type = atom->type;

 int nlocal = atom->nlocal;

 int newton_pair = force->newton_pair;

 inum = list->inum;

 ilist = list->ilist;

 numneigh = list->numneigh;

 firstneigh = list->firstneigh;

 // calculate coordination number for softening function

 171

 for (ii = 0; ii < inum; ii++)

 {

 i = ilist[ii];

 coord[tag[i]]=0;

 }

 for (ii = 0; ii < inum; ii++) {

 i = ilist[ii];

 itag = tag[i];

 itype = map[type[i]];

 xtmp = x[i][0];

 ytmp = x[i][1];

 ztmp = x[i][2];

 jlist = firstneigh[i];

 jnum = numneigh[i];

 for (jj = 0; jj < jnum; jj++) {

 j=jlist[jj];

 jtag = tag[j];

 jtype = map[type[j]];

 if (softflag[itype][jtype])

 {

 ijparam = elem2param[itype][jtype][jtype];

 bigr = soft[elem2soft[itype][jtype]].bigr;

 bigd = soft[elem2soft[itype][jtype]].bigd;

 delx = xtmp - x[j][0];

 dely = ytmp - x[j][1];

 delz = ztmp - x[j][2];

 rsq = delx*delx + dely*dely + delz*delz;

 r = sqrt(rsq)/params[ijparam].sigma;

 if (r < (bigr - bigd)) coord[itag] += 1;

 else if (r < (bigr + bigd))

 coord[itag] += 1 - (r-bigr+bigd)/(2*bigd) + sin(PIVAL*(r-bigr+bigd)/bigd)/(2*PIVAL);

 }

 }

 }

 // loop over full neighbor list of my atoms

 for (ii = 0; ii < inum; ii++) {

 i = ilist[ii];

 itag = tag[i];

 itype = map[type[i]];

 xtmp = x[i][0];

 ytmp = x[i][1];

 ztmp = x[i][2];

 // two-body interactions, skip half of them

 jlist = firstneigh[i];

 jnum = numneigh[i];

 for (jj = 0; jj < jnum; jj++) {

 172

 j = jlist[jj];

 jtag = tag[j];

 if (itag > jtag) {

 if ((itag+jtag) % 2 == 0) continue;

 } else if (itag < jtag) {

 if ((itag+jtag) % 2 == 1) continue;

 } else {

 if (x[j][2] < ztmp) continue;

 if (x[j][2] == ztmp && x[j][1] < ytmp) continue;

 if (x[j][2] == ztmp && x[j][1] == ytmp && x[j][0] < xtmp) continue;

 }

 jtype = map[type[j]];

 delx = xtmp - x[j][0];

 dely = ytmp - x[j][1];

 delz = ztmp - x[j][2];

 rsq = delx*delx + dely*dely + delz*delz;

 ijparam = elem2param[itype][jtype][jtype];

 if (rsq > params[ijparam].cutpairsq) continue;

 twobody(¶ms[ijparam],rsq,fpair,eflag,evdwl);

 if (softflag[itype][jtype]) gij = gsoft(coord[itag],itype,jtype);

 else if (softflag[jtype][itype]) gij = gsoft(coord[jtag],jtype,itype);

 else gij = 1;

 evdwl = gij*evdwl;

 fpair = gij*fpair;

 f[i][0] += delx*fpair;

 f[i][1] += dely*fpair;

 f[i][2] += delz*fpair;

 f[j][0] -= delx*fpair;

 f[j][1] -= dely*fpair;

 f[j][2] -= delz*fpair;

 if (evflag) ev_tally(i,j,nlocal,newton_pair,

 evdwl,0.0,fpair,delx,dely,delz);

 }

 jnumm1 = jnum - 1;

 for (jj = 0; jj < jnumm1; jj++) {

 j = jlist[jj];

 jtype = map[type[j]];

 delr1[0] = x[j][0] - xtmp;

 delr1[1] = x[j][1] - ytmp;

 delr1[2] = x[j][2] - ztmp;

 rsq1 = delr1[0]*delr1[0] + delr1[1]*delr1[1] + delr1[2]*delr1[2];

 for (kk = jj+1; kk < jnum; kk++) {

 k = jlist[kk];

 ktype = map[type[k]];

 173

 ijkparam = elem2param[itype][jtype][ktype];

 if (rsq1 > params[ijkparam].cutijsq) continue;

 delr2[0] = x[k][0] - xtmp;

 delr2[1] = x[k][1] - ytmp;

 delr2[2] = x[k][2] - ztmp;

 rsq2 = delr2[0]*delr2[0] + delr2[1]*delr2[1] + delr2[2]*delr2[2];

 if (rsq2 > params[ijkparam].cutiksq) continue;

 threebody(¶ms[ijkparam],rsq1,rsq2,delr1,delr2,fj,fk,eflag,evdwl);

 f[i][0] -= fj[0] + fk[0];

 f[i][1] -= fj[1] + fk[1];

 f[i][2] -= fj[2] + fk[2];

 f[j][0] += fj[0];

 f[j][1] += fj[1];

 f[j][2] += fj[2];

 f[k][0] += fk[0];

 f[k][1] += fk[1];

 f[k][2] += fk[2];

 if (evflag) ev_tally3(i,j,k,evdwl,0.0,fj,fk,delr1,delr2);

 }

 }

 }

 if (vflag_fdotr) virial_compute();

}

/* -- */

double PairSWWFNHO::gsoft(double cn, int i, int j)

{

 double ma,mb,mc,md,me,first,second;

 int ij = elem2soft[i][j];

 ma = soft[ij].ma;

 mb = soft[ij].mb;

 mc = soft[ij].mc;

 md = soft[ij].md;

 me = soft[ij].me;

 first = ma/(exp((mb-cn)/mc)+1);

 second = exp(md*(cn-me)*(cn-me));

 return first*second;

}

/* -- */

void PairSWWFNHO::allocate()

{

 allocated = 1;

 int n = atom->ntypes;

 int num = ceil(atom->natoms);

 coord = new double[num+1];

 174

 setflag = memory->create_2d_int_array(n+1,n+1,"pair:setflag");

 cutsq = memory->create_2d_double_array(n+1,n+1,"pair:cutsq");

 softflag = memory->create_2d_int_array(n+1,n+1,"pair:softflag");

 map = new int[n+1];

}

/* --

 global settings

--- */

void PairSWWFNHO::settings(int narg, char **arg)

{

 if (narg != 0) error->all("Illegal pair_style command");

}

/* --

 set coeffs for one or more type pairs

--- */

void PairSWWFNHO::coeff(int narg, char **arg)

{

 int i,j,n;

 if (!allocated) allocate();

 if (narg != 3 + atom->ntypes)

 error->all("Incorrect args for pair coefficients");

 // insure I,J args are * *

 if (strcmp(arg[0],"*") != 0 || strcmp(arg[1],"*") != 0)

 error->all("Incorrect args for pair coefficients");

 // read args that map atom types to elements in potential file

 // map[i] = which element the Ith atom type is, -1 if NULL

 // nelements = # of unique elements

 // elements = list of element names

 if (elements) {

 for (i = 0; i < nelements; i++) delete [] elements[i];

 delete [] elements;

 }

 elements = new char*[atom->ntypes];

 for (i = 0; i < atom->ntypes; i++) elements[i] = NULL;

 nelements = 0;

 for (i = 3; i < narg; i++) {

 if (strcmp(arg[i],"NULL") == 0) {

 map[i-2] = -1;

 continue;

 }

 for (j = 0; j < nelements; j++)

 if (strcmp(arg[i],elements[j]) == 0) break;

 map[i-2] = j;

 if (j == nelements) {

 175

 n = strlen(arg[i]) + 1;

 elements[j] = new char[n];

 strcpy(elements[j],arg[i]);

 nelements++;

 }

 }

 // read potential file and initialize potential parameters

 read_file(arg[2]);

 setup();

 // clear setflag since coeff() called once with I,J = * *

 n = atom->ntypes;

 for (int i = 1; i <= n; i++)

 for (int j = i; j <= n; j++)

 setflag[i][j] = 0;

 // set setflag i,j for type pairs where both are mapped to elements

 int count = 0;

 for (int i = 1; i <= n; i++)

 for (int j = i; j <= n; j++)

 if (map[i] >= 0 && map[j] >= 0) {

 setflag[i][j] = 1;

 count++;

 }

 if (count == 0) error->all("Incorrect args for pair coefficients");

}

/* --

 init specific to this pair style

--- */

void PairSWWFNHO::init_style()

{

 if (atom->tag_enable == 0)

 error->all("Pair style Stillinger-Weber requires atom IDs");

 if (force->newton_pair == 0)

 error->all("Pair style Stillinger-Weber requires newton pair on");

 // need a full neighbor list

 int irequest = neighbor->request(this);

 neighbor->requests[irequest]->half = 0;

 neighbor->requests[irequest]->full = 1;

}

/* --

 init for one type pair i,j and corresponding j,i

--- */

double PairSWWFNHO::init_one(int i, int j)

 176

{

 if (setflag[i][j] == 0) error->all("All pair coeffs are not set");

 return cutmax;

}

/* -- */

void PairSWWFNHO::read_file(char *file)

{

 int params_per_line = 17;

 int soft_per_line = 10;

 int per_line;

 int param_type = 0;

 char **words = new char*[params_per_line+1];

 char look1,look2,look3;

 memory->sfree(params);

 params = NULL;

 nparams = maxparam = 0;

 if (soft !=NULL) free(soft);

 soft = NULL;

 nsofts = maxsofts = 0;

 for (int y=0;y<atom->ntypes;y++)

 for (int z=0;z<atom->ntypes;z++)

 softflag[y][z]=0;

 // open file on proc 0

 FILE *fp;

 if (comm->me == 0) {

 fp = fopen(file,"r");

 if (fp == NULL) {

 char str[128];

 sprintf(str,"Cannot open Stillinger-Weber potential file %s",file);

 error->one(str);

 }

 }

 // read each set of params from potential file

 // one set of params can span multiple lines

 // store params if all 3 element tags are in element list

 int n,nwords,ielement,jelement,kelement;

 char line[MAXLINE],*ptr;

 int eof = 0;

 while (1) {

 param_type=0;

 per_line = params_per_line;

 if (comm->me == 0) {

 ptr = fgets(line,MAXLINE,fp);

 if (ptr == NULL) {

 eof = 1;

 fclose(fp);

 177

 } else n = strlen(line) + 1;

 }

 MPI_Bcast(&eof,1,MPI_INT,0,world);

 if (eof) break;

 MPI_Bcast(&n,1,MPI_INT,0,world);

 MPI_Bcast(line,n,MPI_CHAR,0,world);

 // strip comment, skip line if blank

 if (ptr = strchr(line,'#')) *ptr = '\0';

 nwords = atom->count_words(line);

 if (nwords == 0) continue;

 // determine which parameter type line consists of

 if ((ptr=strchr(line,'S'))) {

 look1 = *(ptr+1);

 look2 = *(ptr+2);

 look3 = *(ptr+3);

 if (look1 == 'o' && look2 == 'f' && look3 == 't') {

 per_line = soft_per_line;

 param_type = 1;

 }

 }

 while (nwords < per_line) {

 n = strlen(line);

 if (comm->me == 0) {

 ptr = fgets(&line[n],MAXLINE-n,fp);

 if (ptr == NULL) {

 eof = 1;

 fclose(fp);

 } else n = strlen(line) + 1;

 }

 MPI_Bcast(&eof,1,MPI_INT,0,world);

 if (eof) break;

 MPI_Bcast(&n,1,MPI_INT,0,world);

 MPI_Bcast(line,n,MPI_CHAR,0,world);

 if (ptr = strchr(line,'#')) *ptr = '\0';

 nwords = atom->count_words(line);

 }

 if (nwords != per_line) error->all("Incorrect format in Stillinger-Weber potential file");

 // words = ptrs to all words in line

 nwords = 0;

 words[nwords++] = strtok(line," \t\n\r\f");

 while (words[nwords++] = strtok(NULL," \t\n\r\f")) continue;

 //2 and 3 body parameter settings

 if (param_type == 0) {

 // ielement,jelement,kelement = 1st args

 // if all 3 args are in element list, then parse this line

 // else skip to next entry in file

 178

 for (ielement = 0; ielement < nelements; ielement++)

 if (strcmp(words[0],elements[ielement]) == 0) break;

 if (ielement == nelements) continue;

 for (jelement = 0; jelement < nelements; jelement++)

 if (strcmp(words[1],elements[jelement]) == 0) break;

 if (jelement == nelements) continue;

 for (kelement = 0; kelement < nelements; kelement++)

 if (strcmp(words[2],elements[kelement]) == 0) break;

 if (kelement == nelements) continue;

 // load up parameter settings and error check their values

 if (nparams == maxparam) {

 maxparam += DELTA;

 params = (Param *) memory->srealloc(params,maxparam*sizeof(Param),

 "pair:params");

 }

 params[nparams].ielement = ielement;

 params[nparams].jelement = jelement;

 params[nparams].kelement = kelement;

 params[nparams].epsilon = atof(words[3]);

 params[nparams].sigma = atof(words[4]);

 params[nparams].aij = atof(words[5]);

 params[nparams].aik = atof(words[6]);

 params[nparams].lambda = atof(words[7]);

 params[nparams].gammaij = atof(words[8]);

 params[nparams].gammaik = atof(words[9]);

 params[nparams].costheta = atof(words[10]);

 params[nparams].biga = atof(words[11]);

 params[nparams].bigb = atof(words[12]);

 params[nparams].powerp = atof(words[13]);

 params[nparams].powerq = atof(words[14]);

 params[nparams].cij = atof(words[15]);

 params[nparams].tol = atof(words[16]);

 /*

 if (params[nparams].epsilon < 0.0 || params[nparams].sigma < 0.0 ||

 params[nparams].aij < 0.0 || params[nparams].aik < 0.0 ||

 params[nparams].lambda < 0.0 || params[nparams].gammaij < 0.0 ||

 params[nparams].gammaik < 0.0 || ||

 params[nparams].bigb < 0.0 || params[nparams].powerp < 0.0 ||

 params[nparams].powerq < 0.0 || params[nparams].cij < 0.0 ||

 params[nparams].tol < 0.0)

 error->all("Illegal Stillinger-Weber parameter");

 */

 nparams++;

 } else if (param_type == 1) {

 for (ielement = 0; ielement < nelements; ielement++)

 if (strcmp(words[1],elements[ielement]) == 0) break;

 if (ielement == nelements) continue;

 for (jelement = 0; jelement < nelements; jelement++)

 if (strcmp(words[2],elements[jelement]) == 0) break;

 if (jelement == nelements) continue;

 // load up parameter settings and error check their values

 179

 softflag[ielement][jelement] = 1;

 if (nsofts == maxsofts) {

 maxsofts += DELTA;

 soft = (Softparam *) memory->srealloc(soft,maxsofts*sizeof(Softparam),

 "pair:soft");

 }

 soft[nsofts].ielement = ielement;

 soft[nsofts].jelement = jelement;

 soft[nsofts].ma = atof(words[3]);

 soft[nsofts].mb = atof(words[4]);

 soft[nsofts].mc = atof(words[5]);

 soft[nsofts].md = atof(words[6]);

 soft[nsofts].me = atof(words[7]);

 soft[nsofts].bigr = atof(words[8]);

 soft[nsofts].bigd = atof(words[9]);

 nsofts++;

 }

 }

 delete [] words;

}

/* -- */

void PairSWWFNHO::setup()

{

 int i,j,k,m,n,o,p;

 double rtmp1,rtmp2,rtmp3;

 // set elem2param for all triplet combinations

 // must be a single exact match to lines read from file

 // do not allow for ACB in place of ABC

 if (elem2param) memory->destroy_3d_int_array(elem2param);

 elem2param = memory->create_3d_int_array(nelements,nelements,nelements,

 "pair:elem2param");

 if (elem2soft) memory->destroy_2d_int_array(elem2soft);

 elem2soft = memory->create_2d_int_array(nelements,nelements,"pair:elem2soft");

 for (i = 0; i < nelements; i++) {

 for (j = 0; j < nelements; j++) {

 o = -1;

 for (p = 0; p < nsofts; p++) {

 if (i == soft[p].ielement && j == soft[p].jelement) {

 if (o >= 0) error->all("Potential file has duplicate entry");

 o = p;

 }

 }

 elem2soft[i][j] = o;

 for (k = 0; k < nelements; k++) {

 n = -1;

 for (m = 0; m < nparams; m++) {

 if (i == params[m].ielement && j == params[m].jelement &&

 k == params[m].kelement) {

 if (n >= 0) error->all("Potential file has duplicate entry");

 n = m;

 180

 }

 }

 if (n < 0) error->all("Potential file is missing an entry");

 elem2param[i][j][k] = n;

 }

 }

 }

 // compute parameter values derived from inputs

 // set cutsq using shortcut to reduce neighbor list for accelerated

 // calculations. cuts must remain unchanged as it is a potential parameter

 // (cut = a*sigma)

 for (m = 0; m < nparams; m++) {

 params[m].cutpair = params[m].sigma*params[m].cij;

 params[m].cutij = params[m].sigma*params[m].aij;

 params[m].cutik = params[m].sigma*params[m].aik;

 rtmp1 = params[m].cutpair;

 rtmp2 = params[m].cutij;

 rtmp3 = params[m].cutik;

 if (params[m].tol > 0.0) error->all("Potential not currently set to accept tol values");

 params[m].cutpairsq = rtmp1 * rtmp1;

 params[m].cutijsq = rtmp2 * rtmp2;

 params[m].cutiksq = rtmp3 * rtmp3;

 params[m].sigma_gammaij = params[m].sigma*params[m].gammaij;

 params[m].sigma_gammaik = params[m].sigma*params[m].gammaik;

 params[m].lambda_epsilon = params[m].lambda*params[m].epsilon;

 params[m].lambda_epsilon2 = 2.0*params[m].lambda*params[m].epsilon;

 params[m].c1 = params[m].biga*params[m].epsilon *

 params[m].powerp*params[m].bigb *

 pow(params[m].sigma,params[m].powerp);

 params[m].c2 = params[m].biga*params[m].epsilon*params[m].powerq *

 pow(params[m].sigma,params[m].powerq);

 params[m].c3 = params[m].biga*params[m].epsilon*params[m].bigb *

 pow(params[m].sigma,params[m].powerp+1.0);

 params[m].c4 = params[m].biga*params[m].epsilon *

 pow(params[m].sigma,params[m].powerq+1.0);

 params[m].c5 = params[m].biga*params[m].epsilon*params[m].bigb *

 pow(params[m].sigma,params[m].powerp);

 params[m].c6 = params[m].biga*params[m].epsilon *

 pow(params[m].sigma,params[m].powerq);

 }

 // set cutmax to max of all params

 cutmax = 0.0;

 for (m = 0; m < nparams; m++) {

 rtmp1 = sqrt(params[m].cutpairsq);

 if (rtmp1 > cutmax) cutmax = rtmp1;

 rtmp2 = sqrt(params[m].cutijsq);

 181

 if (rtmp2 > cutmax) cutmax = rtmp2;

 rtmp3 = sqrt(params[m].cutiksq);

 if (rtmp3 > cutmax) cutmax = rtmp3;

 }

}

/* -- */

void PairSWWFNHO::twobody(Param *param, double rsq, double &fforce,

 int eflag, double &eng)

{

 double r,rinvsq,rp,rq,rainv,rainvsq,expsrainv;

 r = sqrt(rsq);

 rinvsq = 1.0/rsq;

 rp = pow(r,-param->powerp);

 rq = pow(r,-param->powerq);

 rainv = 1.0 / (r - param->cutpair);

 rainvsq = rainv*rainv*r;

 expsrainv = exp(param->sigma * rainv);

 fforce = (param->c1*rp - param->c2*rq +

 (param->c3*rp -param->c4*rq) * rainvsq) * expsrainv * rinvsq;

 if (eflag) eng = (param->c5*rp - param->c6*rq) * expsrainv;

}

/* -- */

void PairSWWFNHO::threebody(Param *paramijk,

 double rsq1, double rsq2,

 double *delr1, double *delr2,

 double *fj, double *fk, int eflag, double &eng)

{

 double r1,rinvsq1,rainv1,gsrainv1,gsrainvsq1,expgsrainv1;

 double r2,rinvsq2,rainv2,gsrainv2,gsrainvsq2,expgsrainv2;

 double rinv12,cs,delcs,delcssq,facexp,facrad,frad1,frad2;

 double facang,facang12,csfacang,csfac1,csfac2;

 r1 = sqrt(rsq1);

 rinvsq1 = 1.0/rsq1;

 rainv1 = 1.0/(r1 - paramijk->cutij);

 gsrainv1 = paramijk->sigma_gammaij * rainv1;

 gsrainvsq1 = gsrainv1*rainv1/r1;

 expgsrainv1 = exp(gsrainv1);

 r2 = sqrt(rsq2);

 rinvsq2 = 1.0/rsq2;

 rainv2 = 1.0/(r2 - paramijk->cutik);

 gsrainv2 = paramijk->sigma_gammaik * rainv2;

 gsrainvsq2 = gsrainv2*rainv2/r2;

 expgsrainv2 = exp(gsrainv2);

 rinv12 = 1.0/(r1*r2);

 cs = (delr1[0]*delr2[0] + delr1[1]*delr2[1] + delr1[2]*delr2[2]) * rinv12;

 delcs = cs - paramijk->costheta;

 delcssq = delcs*delcs;

 182

 facexp = expgsrainv1*expgsrainv2;

 // facrad = sqrt(paramijk->lambda_epsilon*paramijk->lambda_epsilon) *

 // facexp*delcssq;

 facrad = paramijk->lambda_epsilon * facexp*delcssq;

 frad1 = facrad*gsrainvsq1;

 frad2 = facrad*gsrainvsq2;

 facang = paramijk->lambda_epsilon2 * facexp*delcs;

 facang12 = rinv12*facang;

 csfacang = cs*facang;

 csfac1 = rinvsq1*csfacang;

 fj[0] = delr1[0]*(frad1+csfac1)-delr2[0]*facang12;

 fj[1] = delr1[1]*(frad1+csfac1)-delr2[1]*facang12;

 fj[2] = delr1[2]*(frad1+csfac1)-delr2[2]*facang12;

 csfac2 = rinvsq2*csfacang;

 fk[0] = delr2[0]*(frad2+csfac2)-delr1[0]*facang12;

 fk[1] = delr2[1]*(frad2+csfac2)-delr1[1]*facang12;

 fk[2] = delr2[2]*(frad2+csfac2)-delr1[2]*facang12;

 if (eflag) eng = facrad;

}

 183

"SiO.sw_wfnho"

Parameters for the Stillinger-Weber like potential developed by Watanabe, et. al

multiple entries can be added to this file, LAMMPS reads the ones it needs

these entries are in LAMMPS "metal" units:

epsilon = eV; sigma = Angstroms

other quantities are unitless

format of a single element triplet entry (one or more lines):

element 1, element 2, element 3, epsilon, sigma, a_ij, a_ik, lambda, gamm_ij,

gamm_ik, costheta0, Aij, Bij, pij, qij, cij, tol

epsilon and sigma are scaling quantaties, a_ij through costheta0 are for 3-body

interactions

and Aij through cij are for 2 body interactions.

NOTE! a_ij, a_ik, and cij are the cutoff distances used by the potential. These replace

the

single cutoff distance, a, used in the Stillinger-Weber potential.

Watanabe and Ganster both label cij differently, but "cij" was chosen here to

minimize confusion

format of the bond-softening function (must start line with "Soft":

Soft, element 1, element 2, m1, m2, m3, m4, m5, R, D

The bond-softening function is only calculated for element 1 being bonded to element

2.

All other pairings have the function = 1

Si = parameters from Watanabe, et. al, Jap. J. Appl. Phys., v. 38 p. L366 (1999)

Si(a) = parameters from Ganster, et. al, Phys. Rev. B, v. 81 p. 045315 (2010) that

exactly

reproduces Si Si Si of Stillinger and Weber, Phys. Rev. B, v. 31, p. 5262, (1985)

#E1 E2 E3 epsil sigma a_ij a_ik lambda gamm_ij gamm_ik costheta0 Aij

Bij pij qij cij tol

 Si Si Si 2.1696 2.0951 1.80 1.80 16.404 1.0473 1.0473 -0.333333333333

7.049556277 0.6022245584 4.0 0.0 1.80 0.0

 Si Si O 2.1696 2.0951 1.90 1.40 10.667 1.93973 0.25 -0.333333333333

7.049556277 0.6022245584 4.0 0.0 1.80 0.0

 184

 Si O Si 2.1696 2.0951 1.40 1.90 10.667 0.25 1.93973 -0.333333333333

115.364065913 0.9094442793 2.58759 2.39370 1.40 0.0

 Si O O 2.1696 2.0951 1.65 1.65 3.1892 0.3220 0.3220 -0.333333333333

115.364065913 0.9094442793 2.58759 2.39370 1.40 0.0

 O Si Si 2.1696 2.0951 1.40 1.40 2.9572 0.71773 0.71773 -0.6155238

115.364065913 0.9094442793 2.58759 2.39370 1.40 0.0

 O Si O 2.1696 2.0951 0.0 0.0 0.0 0.0 0.0 0.0 115.364065913

0.9094442793 2.58759 2.39370 1.40 0.0

 O O Si 2.1696 2.0951 0.0 0.0 0.0 0.0 0.0 0.0 -12.292427744 0.0

0.0 2.24432 1.25 0.0

 O O O 2.1696 2.0951 0.0 0.0 0.0 0.0 0.0 0.0 -12.292427744 0.0

0.0 2.24432 1.25 0.0

#Parameters for the bond-softening function

#Soft E1 E2 m1 m2 m3 m4 m5 R D

 Soft O Si 0.0970 1.6000 0.3654 0.1344 6.4176 1.3 0.1

#E1 E2 E3 epsil sigma a_ij a_ik lambda gamm_ij gamm_ik costheta0 Aij

Bij pij qij cij tol

 Si(a) Si(a) Si(a) 2.1696 2.0951 1.80 1.80 21.0 1.20 1.20 -0.333333333333

7.049556277 0.6022245584 4.0 0.0 1.80 0.0

 Si(a) Si(a) O 2.1696 2.0951 1.90 1.40 10.667 1.93973 0.25 -0.333333333333

7.049556277 0.6022245584 4.0 0.0 1.80 0.0

 Si(a) O Si(a) 2.1696 2.0951 1.90 1.40 10.667 1.93973 0.25 -0.333333333333

115.364065913 0.9094442793 2.58759 2.39370 1.40 0.0

 Si(a) O O 2.1696 2.0951 1.65 1.65 3.1892 0.3220 0.3220 -0.333333333333

115.364065913 0.9094442793 2.58759 2.39370 1.40 0.0

 O Si(a) Si(a) 2.1696 2.0951 1.40 1.40 2.9572 0.71773 0.71773 -0.6155238

115.364065913 0.9094442793 2.58759 2.39370 1.40 0.0

 O Si(a) O 2.1696 2.0951 0.0 0.0 0.0 0.0 0.0 0.0 115.364065913

0.9094442793 2.58759 2.39370 1.40 0.0

 O O Si(a) 2.1696 2.0951 0.0 0.0 0.0 0.0 0.0 0.0 -12.292427744 0.0

0.0 2.24432 1.25 0.0

 185

#O O O 2.1696 2.0951 0.0 0.0 0.0 0.0 0.0 0.0 -12.292427744 0.0

0.0 2.24432 1.25 0.0

#Parameters for the bond-softening function

#Soft E1 E2 m1 m2 m3 m4 m5 R D
 Soft O Si(a) 0.0970 1.6000 0.3654 0.1344 6.4176 1.3 0.1

